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The Libor Market Model I

Many of the models considered so far describe the evolution of the yield curve
in terms of a small set of Markov state variables. While proper calibration
procedures allow for successful application of such models to the pricing and
hedging of a surprising variety of securities, many exotic derivatives require
richer dynamics than what is possible with low-dimensional Markov models.
For instance, exotic derivatives may be strongly sensitive to the joint evolution
of multiple points of the yield curve, necessitating the usage of several driving
Brownian motions. Also, most exotic derivatives may not be related in any
obvious way to vanilla European options, making it hard to confidently iden-
tify a small, representative set of vanilla securities to which a low-dimensional
Markovian model can feasibly be calibrated. What is required in such situa-
tions is a model sufficiently rich to capture the full correlation structure across
the entire yield curve and to allow for volatility calibration to a large enough
set of European options that the volatility characteristics of most exotic se-
curities can be considered “spanned” by the calibration. Candidates for such
a model include the multi-factor short-rate models in Chapter 13 and the
multi-factor quasi-Gaussian models in Section 14.3. In this chapter, we shall
cover an alternative approach to the construction of multi-factor interest rate
models, the so-called Libor market (LM) model framework. Originally devel-
oped in Brace et al. [1996], Jamshidian [1997], and Miltersen et al. [1997],
the LM model class enjoys significant popularity with practitioners and is in
many ways easier to grasp than, say, the multi-factor quasi-Gaussian models
in Chapter 14.

This chapter develops the basic LM model and provides a series of exten-
sions to the original log-normal framework in Brace et al. [1996] and Miltersen
et al. [1997] in order to better capture observed volatility smiles. To facilitate
calibration of the model, efficient techniques for the pricing of European se-
curities are developed. We provide a detailed discussion of the modeling of
forward rate correlations which, along with the pricing formulas for caps and
swaptions, serves as the basis for most of the calibration strategies that we pro-
ceed to examine. Many of these strategies are generic in nature and apply to
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multi-factor models other than the LM class, including the models discussed
in Chapters 13 and 14. We wrap up the chapter with a careful discussion of
schemes for Monte Carlo simulation of LM models. A number of advanced
topics in LM modeling will be covered in Chapter 16.

15.1 Introduction and Setup

15.1.1 Motivation and Historical Notes

Chapter 5 introduced the HJM framework which, in its most general form,
involves multiple driving Brownian motions and an infinite set of state vari-
ables (namely the set of instantaneous forward rates). As argued earlier, the
HJM framework contains any arbitrage-free interest rate model adapted to a
finite set of Brownian motions. Working directly with instantaneous forward
rates is, however, not particularly attractive in applications, for a variety of
reasons. First, instantaneous forward rates are never quoted in the market,
nor do they figure directly in the payoff definition of any traded derivative
contract. As discussed in Chapter 6, realistic securities (swaps, caps, futures,
etc.) instead involve simply compounded (Libor) rates, effectively represent-
ing integrals of instantaneous forwards. The disconnect between market ob-
servables and model primitives often makes development of market-consistent
pricing expression for simple derivatives cumbersome. Second, an infinite set
of instantaneous forward rates can generally1 not be represented exactly on a
computer, but will require discretization into a finite set. Third, prescribing
the form of the volatility function of instantaneous forward rates is subject to
a number of technical complications, requiring sub-linear growth to prevent
explosions in the forward rate dynamics, which precludes the formulation of
a log-normal forward rate model (see Sandmann and Sondermann [1997] and
the discussion in Sections 5.5.3 and 12.1.3).

As discovered in Brace et al. [1996], Jamshidian [1997], and Miltersen et al.
[1997], the three complications above can all be addressed simultaneously by
simply writing the model in terms of a non-overlapping set of simply com-
pounded Libor rates. Not only do we then conveniently work with a finite
set of directly observable rates that can be represented on a computer, but,
as we shall show, an explosion-free log-normal forward rate model also be-
comes possible. Despite the change to simply compounded rates, we should
emphasize that the Libor market model will still be a special case of an HJM
model, albeit one where we only indirectly specify the volatility function of
the instantaneous forward rates.

1As we have seen in earlier chapters, for special choices of the forward rate
volatility we can sometimes identify a finite-dimensional Markovian representation
of the forward curve that eliminates the need to store the entire curve. This is not
possible in general, however.
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15.1.2 Tenor Structure

The starting point for our development of the LM model is a fixed tenor
structure

0 = T0 < T1 < . . . < TN . (15.1)

The intervals τn = Tn+1 − Tn, n = 0, . . . , N − 1, would typically be set to
be either 3 or 6 months, corresponding to the accrual period associated with
observable Libor rates. Rather than keeping track of an entire yield curve, at
any point in time t we are (for now) focused only on a finite set of zero-coupon
bonds P (t, Tn) for the set of n’s for which TN ≥ Tn > t; notice that this set
shrinks as t moves forward, becoming empty when t > TN . To formalize this
“roll-off” of zero-coupon bonds in the tenor structure as time progresses, it is
often useful to work with an index function q(t), defined by the relation

Tq(t)−1 ≤ t < Tq(t). (15.2)

We think of q(t) as representing the tenor structure index of the shortest-dated
discount bond still alive.

On the fixed tenor structure, we proceed to define Libor forward rates
according to the relation (see (5.2))

L(t, Tn, Tn+1) = Ln(t) =

(
P (t, Tn)

P (t, Tn+1)
− 1

)
τ−1
n , N − 1 ≥ n ≥ q(t).

We note that when considering a given Libor forward rate Ln(t), we always
assume n ≥ q(t) unless stated otherwise. For any Tn > t,

P (t, Tn) = P (t, Tq(t))
n−1∏

i=q(t)

(1 + Li(t)τi)
−1 . (15.3)

Notice that knowledge of Ln(t) for all n ≥ q(t) is generally not sufficient to
reconstruct discount bond prices on the entire (remaining) tenor structure;
the front “stub” discount bond price P (t, Tq(t)) must also be known.

15.2 LM Dynamics and Measures

15.2.1 Setting

In the Libor market model, the set of Libor forwards
Lq(t)(t),Lq(t)+1(t), . . . , LN−1(t) constitute the set of state variables for
which we wish to specify dynamics. As a first step, we pick a probability
measure P and assume that those dynamics originate from an m-dimensional
Brownian motion W (t), in the sense that all Libor rates are measurable with
respect to the filtration generated by W (·). Further assuming that the Libor
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rates are square integrable, it follows from the Martingale Representation
Theorem that, for all n ≥ q(t),

dLn(t) = σn(t)⊤ (µn(t) dt+ dW (t)) , (15.4)

where µn and σn are m-dimensional processes, respectively, both adapted to
the filtration generated by W (·). From the Diffusion Invariance Principle (see
Section 2.5) we know that σn(t) is measure invariant, whereas µn(t) is not.

As it turns out, for a given choice of σn in the specification (15.4), it
is quite straightforward to work out explicitly the form of µn(t) in various
martingale measures of practical interest. We turn to this shortly, but let us
first stress that (15.4) allows us to use a different volatility function σn for each
of the forward rates Ln(t), n = q(t), . . . , N − 1, in the tenor structure. This
obviously gives us tremendous flexibility in specifying the volatility structure
of the forward curve evolution, but in practice will require us to impose quite
a bit of additional structure on the model to ensure realism and to avoid an
excess of parameters. We shall return to this topic later in this chapter.

15.2.2 Probability Measures

As shown in Lemma 5.2.3, Ln(t) must be a martingale in the Tn+1-forward
measure QTn+1, such that, from (15.4),

dLn(t) = σn(t)⊤ dWn+1(t), (15.5)

where Wn+1(·) , WTn+1(·) is an m-dimensional Brownian motion in QTn+1 .
It is to be emphasized that only one specific Libor forward rate — namely
Ln — is a martingale in the Tn+1-forward measure. To establish dynamics in
other probability measures, the following proposition is useful.

Proposition 15.2.1. Let Ln satisfy (15.5). In measure QTn the process for
Ln is

dLn(t) = σn(t)⊤
(

τnσn(t)

1 + τnLn(t)
dt+ dWn(t)

)
,

where Wn is an m-dimensional Brownian motion in measure QTn .

Proof. From Theorem 2.4.2 we know that the density relating the measures
QTn+1 and QTn is given by

ς(t) = E
Tn+1

t

(
dQTn

dQTn+1

)

=
P (t, Tn)/P (0, Tn)

P (t, Tn+1)/P (0, Tn+1)
= (1 + τnLn(t))

P (0, Tn+1)

P (0, Tn)
.

Clearly, then,
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dς(t) =
P (0, Tn+1)

P (0, Tn)
τn dLn(t) =

P (0, Tn+1)

P (0, Tn)
τnσn(t)⊤ dWn+1(t),

or

dς(t)/ς(t) =
τnσn(t)⊤ dWn+1(t)

1 + τnLn(t)
.

From the Girsanov theorem (Theorem 2.5.1), it follows that the process

dWn(t) = dWn+1(t) − τnσn(t)

1 + τnLn(t)
dt (15.6)

is a Brownian motion in QTn . The proposition then follows directly from (15.5).
⊓⊔

To gain some further intuition for the important result in Proposition
15.2.1, let us derive it in less formal fashion. For this, consider the forward
discount bond P (t, Tn, Tn+1) = P (t, Tn+1)/P (t, Tn) = (1 + τnLn(t))

−1
. An

application of Ito’s lemma to (15.5) shows that

dP (t, Tn, Tn+1)

= τ2
n (1 + τnLn(t))

−3
σn(t)⊤σn(t) dt− τn (1 + τnLn(t))

−2
σn(t)⊤ dWn+1(t)

= τn (1 + τnLn(t))−2 σn(t)⊤
{
τn (1 + τnLn(t))−1 σn(t) dt− dWn+1(t)

}
.

As P (t, Tn, Tn+1) must be a martingale in the QTn -measure, it follows that

−dWn(t) = τn (1 + τnLn(t))
−1
σn(t) dt− dWn+1(t)

is a Brownian motion in QTn , consistent with the result in Proposition 15.2.1.
While Proposition 15.2.1 only relates “neighboring” measures QTn+1 and

QTn , it is straightforward to use the proposition iteratively to find the drift of
Ln(t) in any of the probability measures discussed in Section 5.2. Let us give
some examples.

Lemma 15.2.2. Let Ln satisfy (15.5). Under the terminal measure QTN the
process for Ln is

dLn(t) = σn(t)⊤


−

N−1∑

j=n+1

τjσj(t)

1 + τjLj(t)
dt+ dWN (t)


 ,

where WN is an m-dimensional Brownian motion in measure QTN .

Proof. From (15.6) we know that

dWN (t) = dWN−1(t) +
τN−1σN−1(t)

1 + τN−1LN−1(t)
dt

= dWN−2(t) +
τN−2σN−2(t)

1 + τN−2LN−2(t)
dt+

τN−1σN−1(t)

1 + τN−1LN−1(t)
dt.
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Continuing this iteration down to Wn+1, we get

dWN (t) = dWn+1(t) +

N−1∑

j=n+1

τjσj(t)

1 + τjLj(t)
dt.

The lemma now follows from (15.5). ⊓⊔

Lemma 15.2.3. Let Ln satisfy (15.5). Under the spot measure QB (see Sec-
tion 5.2.3) the process for Ln is

dLn(t) = σn(t)⊤




n∑

j=q(t)

τjσj(t)

1 + τjLj(t)
dt+ dWB(t)


 , (15.7)

where WB is an m-dimensional Brownian motion in measure QB.

Proof. Recall from Section 5.2.3 that the spot measure is characterized by a
rolling or “jumping” numeraire

B(t) = P
(
t, Tq(t)

) q(t)−1∏

n=0

(1 + τnLn(Tn)) . (15.8)

At any time t, the random part of the numeraire is the discount bond
P
(
t, Tq(t)

)
, so effectively we need to establish dynamics in the measure QTq(t) .

Applying the iteration idea shown in the proof of Lemma 15.2.2, we get

dWn+1(t) = dW q(t)(t) +

n∑

j=q(t)

τjσj(t)

1 + τjLj(t)
dt,

as stated. ⊓⊔
The spot and terminal measures are, by far, the most commonly used

probability measures in practice. Occasionally, however, it may be beneficial
to use one of the hybrid measures discussed earlier in this book, for instance
if one wishes to enforce that a particular Libor rate Ln(t) be a martingale. As
shown in Section 5.2.4, we could pick as a numeraire the asset price process

P̃n+1(t) =

{
P (t, Tn+1), t ≤ Tn+1,
B(t)/B(Tn+1), t > Tn+1,

(15.9)

where B is the spot numeraire (15.8). Using the same technique as in the
proofs of Lemmas 15.2.2 and 15.2.3, it is easily seen that now

dLi(t) =




σi(t)

⊤
(
−∑n

j=i+1
τjσj(t)

1+τjLj(t)
dt+ dW̃n+1(t)

)
, t ≤ Tn+1,

σi(t)
⊤
(∑i

j=q(t)
τjσj(t)

1+τjLj(t)
dt+ dW̃n+1(t)

)
, t > Tn+1,
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where W̃n+1(t) is a Brownian motion in the measure induced by the numeraire

P̃n+1(t). Note in particular that Ln(t) is a martingale as desired, and that we
have defined a numeraire which — unlike P (t, Tn) — will be alive at any time
t.

We should note that an equally valid definition of a hybrid measure will
replace (15.9) with the asset process

Pn+1(t) =

{
B(t), t ≤ Tn+1,
B(Tn+1)P (t, TN )/P (Tn+1, TN), t > Tn+1.

(15.10)

This type of numeraire process is often useful in discretization of the LM
model for simulation purposes; see Section 15.6.1.2 for details.

15.2.3 Link to HJM Analysis

As discussed earlier, the LM model is a special case of the general HJM class
of diffusive interest rate models. To explore this relationship a bit further, we
recall that HJM models generally has risk-neutral dynamics of the form

df(t, T ) = σf (t, T )⊤
∫ T

t

σf (t, u) du dt+ σf (t, T )⊤ dW (t),

where f(t, T ) is the time t instantaneous forward rate to time T and σf (t, T )
is the instantaneous forward rate volatility function. From the results in Chap-
ter 5, it follows that dynamics for the forward bond P (t, Tn, Tn+1) is of the
form

dP (t, Tn, Tn+1)

P (t, Tn, Tn+1)
= O(dt) −

(
σP (t, Tn+1)

⊤ − σP (t, Tn)⊤
)
dW (t),

where O(dt) is a drift term and

σP (t, T ) =

∫ T

t

σf (t, u) du.

By definition Ln(t) = τ−1
n (P (t, Tn, Tn+1)

−1 − 1), such that

dLn(t) = O(dt) + τ−1
n (1 + τnLn(t))

∫ Tn+1

Tn

σf (t, u)⊤ du dW (t).

By the Diffusion Invariance Principle (see Section 2.5), it follows from (15.5)
that the LM model volatility σn(t) is related to the HJM instantaneous for-
ward volatility function σf (t, T ) by

σn(t) = τ−1
n (1 + τnLn(t))

∫ Tn+1

Tn

σf (t, u) du. (15.11)
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Note that, as expected, σn(t) → σf (t, Tn) as τn → 0.
It should be obvious from (15.11) that a complete specification of σf (t, T )

uniquely determines the LM volatility σn(t) for all t and all n. On the other
hand, specification of σn(t) for all t and all n does not allow us to imply a
unique HJM forward volatility function σf (t, T ) — all we are specifying is
essentially a strip of contiguous integrals of this function in the T -direction.
This is hardly surprising, inasmuch as the LM model only concerns itself with
a finite set of discrete interest rate forwards and as such cannot be expected
to uniquely characterize the behaviors of instantaneous forward rates and
their volatilities. Along the same lines, we note that the LM model does not
uniquely specify the behavior of the short rate r(t) = f(t, t); as a consequence,
the rolling money-market account β(t) and the risk-neutral measure are not
natural constructions in the LM model2. Section 16.3 discusses these issues in
more details.

15.2.4 Separable Deterministic Volatility Function

So far, our discussion of the LM model has been generic, with little structure
imposed on the N − 1 volatility functions σn(t), n = 1, 2, . . . , N − 1. To build
a workable model, however, we need to be more specific about our choice of
σn(t). A common prescription of σn(t) takes the form

σn(t) = λn(t)ϕ (Ln(t)) , (15.12)

where λn(t) is a bounded vector-valued deterministic function and ϕ : R → R

is a time-homogeneous local volatility function. This specification is concep-
tually very similar to the local volatility models in Chapter 8, although here
σn(t) is vector-valued and the model involves simultaneous modeling of mul-
tiple state variables (the N − 1 Libor forwards).

At this point, the reader may reasonably ask whether the choice (15.12)
in fact leads to a system of SDEs for the various Libor forward rates that
is “reasonable”, in the sense of existence and uniqueness of solutions. While
we here shall not pay much attention to such technical regularity issues, it
should be obvious that not all functions ϕ can be allowed. One relevant result
is given below.

Proposition 15.2.4. Assume that (15.12) holds with ϕ(0) = 0 and that
Ln(0) ≥ 0 for all n. Also assume that ϕ is locally Lipschitz continuous and
satisfies the growth condition

ϕ(x)2 ≤ C
(
1 + x2

)
, x > 0,

where C is some positive constant. Then non-explosive, pathwise unique solu-
tions of the no-arbitrage SDEs for Ln(t), q(t) ≤ n ≤ N − 1, exist under all
measures QTi , q(t) ≤ i ≤ N . If Ln(0) > 0, then Ln(t) stays positive at all t.

2In fact, as discussed in Jamshidian [1997], one does not need to assume that a
short rate process exist when constructing an LM model.
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Proof. (Sketch) Due to the recursive relationship between measures, it suffices
to consider the system of SDEs (15.7) under the spot measure QB:

dLn(t) = ϕ (Ln(t))λn(t)⊤
(
µn(t) dt+ dWB(t)

)
, (15.13)

µn(t) =

n∑

j=q(t)

τjϕ (Lj(t))λj(t)

1 + τjLj(t)
. (15.14)

Under our assumptions, it is easy to see that each term in the sum for µn is
locally Lipschitz continuous and bounded. The growth condition on ϕ in turn
ensures that the product ϕ (Ln(t)) λn(t)⊤µn(t) is also locally Lipschitz con-
tinuous and, due to the boundedness of µn, satisfies a linear growth condition.
Existence and uniqueness now follows from Theorem 2.6.1. The result that 0
is a non-accessible boundary for the forward rates if started above 0 follows
from standard speed-scale boundary classification results; see Andersen and
Andreasen [2000b] for the details. ⊓⊔

Some standard parameterizations of ϕ are shown in Table 15.1. Of those,
only the log-normal specification and the LCEV specification directly satisfy
the criteria in Proposition 15.2.4. The CEV specification violates Lipschitz
continuity at x = 0, and as a result uniqueness of the SDE fails. As shown
in Andersen and Andreasen [2000b], we restore uniqueness by specifying that
forward rates are absorbed at the origin (see also Section 8.2.3). As for the
displaced diffusion specification ϕ(x) = ax+b, we here violate the assumption
that ϕ(0) = 0, and as a result we cannot always guarantee that forward rates
stay positive. Also, to prevent explosion of the forward rate drifts, we need to
impose additional restrictions to prevent terms of the form 1+τnLn(t) from be-
coming zero. As displaced diffusions are of considerable practical importance,
we list the relevant restrictions in Lemma 15.2.5 below.

Name ϕ(x)

Log-normal x

CEV xp, 0 < p < 1
LCEV xmin

(
εp−1, xp−1

)
, 0 < p < 1, ε > 0

Displaced log-normal bx + a, b > 0, a 6= 0

Table 15.1. Common DVF Specifications

Lemma 15.2.5. Consider a local volatility Libor market model with local
volatility function ϕ(x) = bx + a, where b > 0 and a 6= 0. Assume that
bLn(0)+ a > 0 and a/b < τ−1

n for all n = 1, 2, . . . , N − 1. Then non-explosive,
pathwise unique solutions of the no-arbitrage SDEs for Ln(t), q(t) ≤ n ≤ N−1,
exist under all measures QTi , q(t) ≤ i ≤ N . All Ln(t) are bounded from below
by −a/b.
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Proof. Define Hn(t) = bLn(t) + a. By Ito’s lemma, we have

dHn(t) = b dLn(t) = bHn(t)λn(t)⊤
(
µn(t) dt+ dWB(t)

)
,

µn(t) =

n∑

j=q(t)

τjHj(t)λj(t)

1 + τj (Hj(t) − a) /b
.

From the assumptions of the lemma, we have Hn(0) > 0 for all n, allowing
us to apply the result of Proposition 15.2.4 to Hn(t), provided that we can
guarantee that µn(t) is bounded for all positive Hj , j = q(t), . . . , n. This
follows from 1 − τja/b > 0 or a/b < τ−1

j . ⊓⊔
We emphasize that the requirement a/b < τ−1

n implies that only in the
limit of τj → 0 — where the discrete Libor forward rates become instanta-
neous forward rates — will a pure Gaussian LM model specification (b = 0)
be meaningful; such a model was outlined in Section 5.5.1. On the flip-side,
according to Proposition 15.2.4, a finite-sized value of τj ensures that a well-
behaved log-normal forward rate model exists, something that we saw earlier
(Section 12.1.3) was not the case for models based on instantaneous forward
rates. The existence of log-normal forward rate dynamics in the LM setting
was, in fact, a major driving force behind the development and populariza-
tion of the LM framework, and all early examples of LM models (see Brace
et al. [1996], Jamshidian [1997], and Miltersen et al. [1997]) were exclusively
log-normal.

We recall from earlier chapters that it is often convenient to specify dis-
placed diffusion models as ϕ(Ln(t)) = (1 − b)Ln(0) + bLn(t), in which case
the constant a in Lemma 15.2.5 is different from one Libor rate to the next.
In this case, we must require

(1 − b)/b < (Ln(0)τn)−1, n = 1, . . . , N − 1.

As Ln(0)τn is typically in the magnitude of a few percent, the regularity
requirement on b in (15.2.4) is not particularly restrictive.

15.2.5 Stochastic Volatility

As discussed earlier in this book, to ensure that the evolution of the volatility
smile is reasonably stationary, it is best if the skew function ϕ in (15.14) is
(close to) monotonic in its argument. Typically we are interested in specifica-
tions where ϕ(x)/x is downward-sloping, to establish the standard behavior
of interest rate implied volatilities tending to increase as interest rates decline.
In reality, however, markets often exhibit non-monotonic volatility smiles or
“smirks” with high-struck options trading at implied volatilities above the at-
the-money levels. An increasingly popular mechanism to capture such behav-
ior in LM models is through the introduction of stochastic volatility. We have
already encountered stochastic volatility models in Chapters 9, 10 and, in the
context of term structure models, in Sections 14.2 and 14.3; we now discuss
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how to extend the notion of stochastic volatility models to the simultaneous
modeling of multiple Libor forward rates.

As our starting point, we take the process (15.14), preferably equipped
with a ϕ that generates either a flat or monotonically downward-sloping volatil-
ity skew, but allow the term on the Brownian motion to be scaled by a stochas-
tic process. Specifically, we introduce a mean-reverting scalar process z, with
dynamics of the form

dz(t) = θ (z0 − z(t)) dt+ ηψ (z(t)) dZ(t), z(0) = z0, (15.15)

where θ, z0, and η are positive constants, Z is a Brownian motion under the
spot measure QB, and ψ : R+ → R+ is a well-behaved function. We impose
that (15.15) will not generate negative values of z, which requires ψ(0) = 0.
We will interpret the process in (15.15) as the (scaled) variance process for
our forward rate diffusions, in the sense that the square root of z will be used
as a stochastic, multiplicative shift of the diffusion term in (15.14). That is,
our forward rate processes in QB are, for all n ≥ q(t),

dLn(t) =
√
z(t)ϕ (Ln(t)) λn(t)⊤

(√
z(t)µn(t) dt+ dWB(t)

)
, (15.16)

µn(t) =

n∑

j=q(t)

τjϕ (Lj(t)) λj(t)

1 + τjLj(t)
,

where z(t) satisfies (15.15). This construction naturally follows the specifica-
tion of vanilla stochastic volatility models in Chapter 9, and the specification
of stochastic volatility quasi-Gaussian models in Chapter 14. As we discussed
previously, it is often natural to scale the process for z such that z(0) = z0 = 1.

Let us make two important comments about (15.16). First, we emphasize
that a single common factor

√
z simultaneously scales all forward rate volatil-

ities; movements in volatilities are therefore perfectly correlated across the
various forward rates. In effect, our model corresponds only to the first princi-
pal component of the movements of the instantaneous forward rate volatilities.
This is a common assumption that provides good balance between realism and
parsimony, and we concentrate mostly on this case — although we do relax it
later in the book, in Chapter 16. Second, we note that the clean form of the
z-process (15.15) in the measure QB generally does not carry over to other
probability measures, as we would expect from Proposition 9.3.9. To state
the relevant result, let 〈Z(t),W (t)〉 denote the quadratic covariation between
Z(t) and the m components of W (t) (recall the definition of covariation in
Remark 2.1.7). We then have

Lemma 15.2.6. Let dynamics for z(t) in the measure QB be as in (15.15).
Then the SDE for z(t) in measure QTn+1 , n ≥ q(t) − 1, is

dz(t) = θ (z0 − z(t))dt+ ηψ (z(t))

×
(
−
√
z(t)µn(t)⊤

〈
dZ(t), dWB(t)

〉
+ dZn+1(t)

)
, (15.17)
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where µn(t) is given in (15.16) and Zn+1 is a Brownian motion in measure
QTn+1 .

Proof. From earlier results, we have

dWn+1(t) =
√
z(t)µn(t) dt+ dWB(t).

Let us denote
a(t) =

〈
dZ(t), dWB(t)

〉
/dt,

so that we can write

dZ(t) = a(t)⊤ dWB(t) +
√

1 − ‖a(t)‖2 dW̃ (t),

where W̃ is a scalar Brownian motion independent of WB. In the measure
QTn+1 , we then have

dZ(t) = a(t)⊤
(
dWn+1(t) −

√
z(t)µn(t) dt

)
+
√

1 − ‖a(t)‖2 dW̃ (t)

= dZn+1(t) − a(t)⊤
√
z(t)µn(t) dt,

and the result follows. ⊓⊔
The process (15.17) is awkward to deal with, due to presence of the drift

term µn(t)⊤
〈
dZ(t), dWB(t)

〉
which will, in general, depend on the state of the

Libor forward rates at time t. For tractability, on the other hand, we would like
for the z-process to only depend on z itself. To achieve this, and to generally
simplify measure shifts in the model, we make the following assumption3 about
(15.15)–(15.16):

Assumption 15.2.7. The Brownian motion Z(t) of the variance process z(t)
is independent of the vector-valued Brownian motion WB(t).

We have already encountered the same assumption in the context of
stochastic volatility quasi-Gaussian models, see Section 14.2.1, where we also
have a discussion of the implications of such a restriction.

The diffusion coefficient of the variance process, the function ψ, is tradi-
tionally chosen to be of power form, ψ(x) = xα, α > 0. While it probably
makes sense to keep the function monotone, the power specification is proba-
bly a nod to tradition rather than anything else. Nevertheless, some particular
choices lead to analytically tractable specifications, as we saw in Chapter 9;
for that reason, α = 1/2 (the Heston model) is popular.

Remark 15.2.8. Going forward we shall often use the stochastic volatility (SV)
model in this section as a benchmark for theoretical and numerical work. As
the stochastic volatility model reduces to the local volatility model in Section
15.2.4 when z(t) is constant, all results for the SV model will carry over to
the DVF setting.

3We briefly return to the general case in Section 16.6.
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15.2.6 Time-Dependence in Model Parameters

In the models we outlined in Sections 15.2.4 and 15.2.5, the main role of the
vector-valued function of time λn(t) was to establish a term structure “spine”
of at-the-money option volatilities. To build volatility smiles around this spine,
we further introduced a universal skew-function ϕ, possibly combined with
a stochastic volatility scale z(t) with time-independent process parameters.
In practice, this typically gives us a handful of free parameters with which
we can attempt to match the market-observed term structures of volatility
smiles for various cap and swaption tenors. As it turns out, a surprisingly
good fit to market skew data can, in fact, often be achieved with the models
of Sections 15.2.4 and 15.2.5. For a truly precise fit to volatility skews across
all maturities and swaption tenors, it may, however, be necessary to allow
for time-dependence in both the dynamics of z(t) and, more importantly, the
skew function ϕ. The resulting model is conceptually similar to the model
in Section 15.2.5, but involves a number of technical intricacies that draw
heavily on the material presented in Chapter 10. To avoid cluttering this first
chapter on LM model with technical detail, we relegate the treatment of the
time-dependent case to the next chapter on advanced topics in LM modeling.

15.3 Correlation

In a one-factor model for interest rates — such as the ones presented in Chap-
ters 11 and 12 — all points on the forward curve always move in the same
direction. While this type of forward curve move indeed is the most commonly
observed type of shift to the curve, “rotational steepenings” and the formation
of “humps” may also take place, as may other more complex types of curve
perturbations. The empirical presence of such non-trivial curve movements is
an indication of the fact that various points on the forward curve do not move
co-monotonically with each other, i.e. they are imperfectly correlated. A key
characteristic of the LM model is the consistent use of vector-valued Brownian
motion drivers, of dimension m, which gives us control over the instantaneous
correlation between various points on the forward curve.

Proposition 15.3.1. The correlation between forward rate increments dLk(t)
and dLj(t) in the SV-model (15.16) is

Corr (dLk(t), dLj(t)) =
λk(t)⊤λj(t)

‖λk(t)‖ ‖λj(t)‖
.

Proof. Using the covariance notation of Remark 2.1.7, we have, for any j and
k,

d〈Lk(t), Lj(t)〉 = z(t)ϕ (Lk(t))ϕ (Lj(t))λk(t)⊤λj(t) dt.

Using this in the definition of the correlation,
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Corr (dLk(t), dLj(t)) =
〈dLk(t), dLj(t)〉√
〈dLk(t)〉〈dLj(t)〉

,

gives the result of the proposition. ⊓⊔
A trivial corollary of Proposition 15.3.1 is the fact that

Corr (dLk(t), dLj(t)) = 1 always when m = 1, i.e. when we only have
one Brownian motion. As we add more Brownian motions, our ability
to capture increasingly complicated correlation structures progressively
improves (in a sense that we shall examine further shortly), but at a cost of
increasing the model complexity and, ultimately, computational effort. To
make rational decisions about the choice of model dimension m, let us turn
to the empirical data.

15.3.1 Empirical Principal Components Analysis

For some fixed value of τ (e.g. 0.25 or 0.5) define “sliding” forward rates4 l
with tenor x as

l(t, x) = L(t, t+ x, t+ x+ τ).

For a given set of tenors x1, . . . , xNx
and a given set of calendar times

t0, t1, . . . , tNt
, we use market observations5 to set up the Nx × Nt observa-

tion matrix O with elements

Oi,j =
l(tj , xi) − l(tj−1, xi)√

tj − tj−1
, i = 1, . . . , Nx, j = 1, . . . , Nt.

Notice the normalization with
√
tj − tj−1 which annualizes the variance of the

observed forward rate increments. Also note that we use absolute increments
in forward rates here. This is arbitrary — we could have used, say, relative
increases as well, if we felt that rates were more log-normal than Gaussian.
For small sampling periods, the precise choice is of little importance.

Assuming time-homogeneity and ignoring small drift terms, the data col-
lected above will imply a sample Nx × Nx variance-covariance matrix equal
to

C =
OO⊤

Nt
.

For our LM model to conform to empirical data, we need to use a suffi-
ciently high number m of Brownian motions to closely replicate this variance-
covariance matrix. A formal analysis of what value of m will suffice can pro-
ceed with the tools of principal components analysis (PCA), as established in
Section 4.1.3.

4The use of sliding forward rates, i.e. forward rates with a fixed time to maturity
rather than a fixed time of maturity, is often known as the Musiela parameterization.

5For each date in the time grid tj we thus construct the forward curve from
market observable swaps, futures, and deposits, using techniques such as those in
Chapter 7.
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15.3.1.1 Example: USD Forward Rates

To give a concrete example of a PCA run, we set Nx = 9 and use tenors
of (x1, . . . , x9) = (0.5, 1, 2, 3, 5, 7, 10, 15, 20) years. We fix τ = 0.5 (i.e., all
forwards are 6-months discrete rates) and use 4 years of weekly data from the
USD market, spanning January 2003 to January 2007, for a total of Nt = 203
curve observations. The eigenvalues of the matrix C are listed in Table 15.2,
along with the percentage of variance that is explained by using only the first
m principal components.

m 1 2 3 4 5 6 7 8 9

Eigenvalue 7.0 0.94 0.29 0.064 0.053 0.029 0.016 0.0091 0.0070
% Variance 83.3 94.5 97.9 98.7 99.3 99.6 99.8 99.9 100

Table 15.2. PCA for USD Rates. All eigenvalues are scaled up by 104.

As we see from the table, the first principal component explains about
83% of the observed variance, and the first three together explain nearly 98%.
This pattern carries over to most major currencies, and in many applications
we would consequently expect that using m = 3 or m = 4 Brownian motions
in a LM model would adequately capture the empirical covariation of the
points on the forward curve. An exception to this rule-of-thumb occurs when
a particular derivative security depends strongly on the correlation between
forward rates with tenors that are close to each other; in this case, as we shall
see in Section 15.3.4, a high number of principal components is required to
provide for sufficient decoupling of nearby forwards.

The eigenvectors corresponding to the largest three eigenvectors in Table
15.2 are shown in the Figure 15.1; the figure gives us a reasonable idea about
what the (suitably scaled) first three elements of the λk(t) vectors should look
like as functions of Tk − t. Loosely speaking, the first principal component
can be interpreted as a near-parallel shift of the forward curve, whereas the
second and third principal components correspond to forward curve twists
and bends, respectively.

15.3.2 Correlation Estimation and Smoothing

Empirical estimates for forward rate correlations can proceed along the lines
of Section 15.3.1. Specifically, if we introduce the diagonal matrix

c ,




√
C1,1 0 · · · 0
0

√
C2,2 · · · 0

...
... · · · 0

0 0 · · ·
√
CNx,Nx


 ,



andersen-piterbarg-book.com September 9, 2009

SA
M

PL
E

(c) Andersen, Piterbarg 2009 

556 15 The Libor Market Model I

Fig. 15.1. Eigenvectors
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Notes: Eigenvectors for the largest three eigenvalues in Table 15.2.

then the empirical Nx ×Nx forward rate correlation matrix R becomes

R = c−1Cc−1.

Element Ri,j of R provides a sample estimate of the instantaneous correlation
between increments in l(t, xi) and l(t, xi), under the assumption that this
correlation is time-homogeneous.

The matrix R is often relatively noisy, partially as a reflection of the fact
that correlations are well-known to be quite variable over time, and partially
as a reflection of the fact that the empirical correlation estimator has rather
poor sample properties with large confidence bounds (see Johnson et al. [1995]
for details). Nevertheless, a few stylistic facts can be gleaned from the data.
In Figure 15.2, we have graphed a few slices of the correlation matrix for the
USD data in Section 15.3.1.1.

To make a few qualitative observations about Figure 15.2, we notice that
correlations between forward rates l(·, xk) and l(·, xj) generally decline in
|xk − xj |; this decline appears near-exponential for xk and xj close to each
other, but with a near-flat asymptote for large |xk − xj |. It appears that the
rate of the correlation decay and the level of the asymptote depend not only
|xk − xj |, but also on min (xk, xj). Specifically, the decay rate decreases with
min (xk, xj), and the asymptote level increases with min (xk, xj).

In practice, unaltered empirical correlation matrices are typically too noisy
for comfort, and might contain non-intuitive entries (e.g., correlation between
a 10-year forward and a 2-year forward might come out higher than between
a 10-year forward and a 5-year forward). As such, it is common practice in
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Fig. 15.2. Forward Rate Correlations
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Notes: For each of three fixed forward rate maturities (6 months, 2 years, and 5
years), the figure shows the correlation between the fixed forward rate and forward
rates with other maturities (as indicated on the x-axis of the graph).

multi-factor yield curve modeling to work with simple parametric forms; this
not only smoothes the correlation matrix, but also conveniently reduces the
effective parameter dimension of the correlation distinct matrix object, from
Nx(Nx−1)/2 matrix elements to the number of parameters in the parametric
form.

Several candidate parametric forms for the correlation have been proposed
in the literature, see Rebonato [2002], Jong et al. [2001], and Schoenmakers
and Coffey [2000], among many others. Rather than list all of these, we instead
focus on a few reasonable forms that we have designed to encompass most or
all of the empirical facts listed above. Our first parametric form is as follows:

Corr (dLk(t), dLj(t)) = q1 (Tk − t, Tj − t) ,

where

q1(x, y) = ρ∞ + (1 − ρ∞) exp (−a (min(x, y)) |y − x|) , (15.18)

a(z) = a∞ + (a0 − a∞)e−κz,

subject to 0 ≤ ρ∞ ≤ 1, a0, a∞, κ ≥ 0. Fundamentally, q1(x, y) exhibits corre-
lation decay at a rate of a as |y − x| is increased, with the decay rate a itself
being an exponential function of min (x, y). We would always expect to have
a0 ≥ a∞, in which case

∂q1(x, y)

∂x
= (1 − ρ∞)e−a(x)(y−x)

[
a(x) + (y − x)κ(a0 − a∞)e−κx

]
, x < y,
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is non-negative, as one would expect.
Variations on (15.18) are abundant in the literature — the case a0 = a∞

is particularly popular — and q1 generally has sufficient degrees of freedom to
provide a reasonable fit to empirical data. One immediate issue, however, is a
lack of control of the asymptotic correlation level at |x− y| → ∞ which, as we
argued above, is typically not independent of x and y. As the empirical data
suggests that ρ∞ tends to increase with min (x, y), we introduce yet another
decaying function

ρ∞(z) = b∞ + (b0 − b∞)e−αz, (15.19)

and extend q1 to the “triple-decaying” form

q2(x, y) = ρ∞ (min(x, y)) + (1 − ρ∞ (min(x, y))) exp (−a (min(x, y)) |y − x|)
(15.20)

with a(z) is given in (15.18), and where 0 ≤ b0, b∞ ≤ 1, α ≥ 0. Empirical data
suggests that normally b0 ≤ b∞, in which case we have

∂q2(x, y)

∂x
= −α(b0 − b∞)e−αx

(
1 − e−a(x)(y−x)

)

+ (1 − ρ∞(x)) e−a(x)(y−x) ×
[
a(x) + (y − x)κ(a0 − a∞)e−κx

]
, x < y,

which remains non-negative if b0 ≤ b∞ and a0 ≥ a∞.
In a typical application, the four parameters of q1 and the six parameters of

q2 are found by least-squares optimization against an empirical correlation ma-
trix. Any standard optimization algorithm, such as the Levenberg-Marquardt
algorithm in Press et al. [1992], can be used for this purpose. Some parameters
are here subject to simple box-style constraints (e.g. ρ∞ ∈ [0, 1]) which poses
no particular problems for most commercial optimizers. In any case, we can
always use functional mappings to rewrite our optimization problem in terms
of variables with unbounded domains. For instance, for form q1, we can set

ρ∞ =
1

2
+

arctan(u)

π
, u ∈ (−∞,∞),

and optimize on the variable u instead of ρ∞. Occasionally, we may sometimes
wish to optimize correlation parameters against more market-driven targets
than empirical correlation matrices; see Section 15.5.9 for details on this.

15.3.2.1 Example: Fit to USD data

Let R be the 10 × 10 empirical correlation matrix generated from the data
in Section 15.3.1.1, and let R2(ξ), ξ ≡ (a0, a∞, κ, b0, b∞, α)

⊤
, be the 10 × 10

correlation matrix generated from the form q2, when using the 10 specific
forward tenors in 15.3.1.1. To determine the optimal parameter vector ξ∗, we
minimize an unweighted Frobenius (least-squares) matrix norm, subject to a
non-negativity constraint
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ξ∗ = argminξ

(
tr
(
(R−R2(ξ)) (R−R2(ξ))

⊤
))

, subject to ξ ≥ 0.

The resulting fit is summarized in Table 15.3; Figure 15.3 in Section 15.3.4.1
contains a 3D plot of the correlation matrix R2(ξ

∗).

a0 a∞ κ b0 b∞ α

0.312 0.157 0.264 0.490 0.946 0.325

Table 15.3. Best-Fit Parameters for q2 in USD Market

The value of the Frobenius norm at ξ∗ was 0.070, which translates into
an average absolute correlation error (excluding diagonal elements) of around
2%. If we use the four parameter form q1 instead of q2 in the optimization
exercise, the Frobenius norm at the optimum increases to 0.164. As we would
expect from Figure 15.2, allowing correlation asymptotes to increase in tenors
thus adds significant explanatory power to the parametric form.

15.3.3 Negative Eigenvalues

While some functional forms are designed to always return valid correlation
matrices (the function in Schoenmakers and Coffey [2000] being one such
example), many popular forms — including our q1 and q2 above — can, when
stressed, generate matrices R that fail to be positive definite. While this rarely
happens in real applications, it is not inconceivable that on occasion one or
more eigenvalues of R may turn out to be negative, requiring us to somehow
“repair” the matrix. A similar problem can also arise due to rounding errors
when working with large empirical correlation matrices.

Formally, when faced with an R matrix that is not positive definite, we
would ideally like to replace it with a modified matrix R∗ which i) is a valid
correlation matrix; and ii) is as close as possible to R, in the sense of some
matrix norm. The problem of locating R∗ then involves computing the norm

{‖R−X‖ : X is a correlation matrix}

and setting R∗ equal to the matrix X that minimizes this distance. If ‖ · ‖ is
a weighted Frobenius norm, numerical algorithms for the computation of R∗

have recently emerged, see Higham [2002] for a review and a clean approach.
If the negative eigenvalues are small in absolute magnitude (which is often

the case in practice), it is often reasonable to abandon a full-blown optimiza-
tion algorithm in favor of a more heuristic approach where we simply raise all
offending negative eigenvalues to some positive cut-off value; we present one
obvious algorithm below.

As a starting point, we write
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R = EΛE⊤,

where Λ is a diagonal matrix of eigenvalues, and E is a matrix with the
eigenvectors of R in its column. Let Λ∗ be the diagonal matrix with all-positive
entries

Λ∗
ii = max(ǫ, Λii), i = 1, . . . , Nx,

for some small cut-off value ǫ > 0. Then set

C∗ = EΛ∗E⊤,

which we interpret as a covariance matrix, i.e. of the form

C∗ = c∗R∗c∗

where c∗ is a diagonal matrix with elements c∗ii =
√
C∗

ii and R∗ is the valid,
positive definite correlation matrix we seek. R∗ is then computed as

R∗ = (c∗)−1C∗(c∗)−1. (15.21)

We emphasize that R∗ as defined in (15.21) will have 1’s in its diagonal,
whereas C∗ will not. Both C∗ and R∗ are, by construction, positive definite.

15.3.4 Correlation PCA

We now turn to a problem that arises in certain important applications, such
as the calibration procedure we shall discuss in Section 15.5. Consider a p-
dimensional Gaussian variable Y , where all elements of Y have zero mean
and unit variance. Let Y have a positive definite correlation matrix R, given
by

R = E
(
Y Y ⊤

)
.

Consider now writing, as an approximation,

Y ≈ DX (15.22)

where X is an m-dimensional vector of independent standard Gaussian vari-
ables, m < p, and D is a p×m-dimensional matrix. We wish to strictly enforce
that DX remains a vector of variables with zero means and unit variances,
thereby ensuring that the matrix DD⊤ has the interpretation of a valid cor-
relation matrix. In particular, we require that the diagonal of DD⊤ is one
everywhere.

Let v(D) be the p-dimensional vector of the diagonal elements of DD⊤, i.e.
vi =

(
DD⊤

)
ii
, i = 1, . . . , p. Working as before with an unweighted6 Frobenius

norm, we set

6The introduction of user-specified weights into this norm is a straightforward
extension.
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h(D;R) = tr
((
R−DD⊤

) (
R−DD⊤

)⊤)
, (15.23)

and define the optimal choice of D, denoted D∗, as

D∗ = argminDh(D;R), subject to v(D) = 1, (15.24)

where 1 is a p-dimensional vector of 1’s.

Proposition 15.3.2. Let µ be a p-dimensional vector, and let Dµ be given as
the unconstrained optimum

Dµ = argminDh(D;R+ diag(µ)),

with h given in (15.23). Define D∗ as in (15.24) and let µ∗ be the solution to

v(Dµ) − 1 = 0.

Then D∗ = Dµ∗ .

Proof. We only provide a sketch of the proof; for more details, see Zhang and
Wu [2003]. First, we introduce the Lagrangian

ℑ (D,µ) = h(D;R) − 2µ⊤ (v(D) − 1) .

(The factor 2 on µ⊤ simplifies results). Standard matrix calculus shows that

dℑ
dD

=

{
dℑ
dDi,j

}
= −4RD+ 4DD⊤D.

Setting the derivatives of the Lagrangian ℑ with respect to D and µ to zero
yields, after a little rearrangement,

− (R+ diag(µ))D +DD⊤D = 0, v(D) = 1.

The first of these conditions identifies the optimum as minimizing the (uncon-
strained) optimization norm h(D;R+ diag(µ)). ⊓⊔

Remark 15.3.3. For any fixed value of µ, Dµ can be computed easily by stan-
dard PCA methods provided we interpret R+diag(µ) as the target covariance
matrix.

With Proposition 15.3.2, determination of D∗ is reduced to solving the p-
dimensional root-search problem v (Dµ)−1 = 0 for µ. Many standard methods
will suffice; for instance, one can use straightforward secant search methods
such as the Broyden algorithm in [Press et al., 1992, p. 389].

As is the case for ordinary PCA approximations of covariance matrices,
the “correlation PCA” algorithm outlined so far will return a correlation ma-
trix approximation D∗(D∗)⊤ that has reduced rank (from p down to m), a
consequence of the PCA steps taken in estimating Dµ.
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Computation of optimal rank-reduced correlation approximations is a rel-
atively well-understood problems, and we should note the existence of sev-
eral recent alternatives to the basic algorithm we outline here. A survey can
be found in Pietersz and Groenen [2004] where an algorithm based on ma-
jorization is developed7. We should also note that certain heuristic (and non-
optimal) methods have appeared in the literature, some of which are closely
related to the simple algorithm we outlined in Section 15.3.3 for repair of
correlation matrices. We briefly outline one such approach below (in Section
15.3.4.2), but first we consider a numerical example.

15.3.4.1 Example: USD Data

We here consider performing a correlation PCA analysis the correlation matrix
R generated from our best-fit form q2 in Section 15.3.2.1. The 3D plots in
Figure 15.3 below show the correlation fit we get with a rank 3 correlation
matrix.

Fig. 15.3. Forward Rate Correlation Matrix in USD
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Notes: The right-hand panel shows the correlation matrix R for form q2 calibrated
to USD data. The left-hand panel shows the best-fitting rank-3 correlation matrix,
computed by the algorithm in Proposition 15.3.2. In both graphs, the x- and y-axes
represent the Libor forward rate maturity in years.

Looking at Figure 15.3, the effect of rank-reduction is, loosely, that the
exponential decay of our original matrix R has been replaced with a “sigmoid”
shape (to paraphrase Riccardo Rebonato) that is substantially too high close

7In our experience, the majorization method in Pietersz and Groenen [2004] is
faster than the method in Proposition 15.3.2 but, contrary to claims in Pietersz
and Groenen [2004], less robust, particularly for very large and irregular correlation
matrices.
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to the matrix diagonal. As the rank of the approximating correlation matrix
is increased, the sigmoid shape is — often rather slowly — pulled towards ex-
ponential shape of the full-rank data. Intuitively, we should not be surprised
at this result: with the rank m being a low number, we effectively only incor-
porate smooth, large-scale curve movements (e.g. parallel shifts and twists)
into our statistical model, and there is no mechanism to “pull apart” forward
rates with maturities close to each other.

Analysis of this difference — rather than the simple PCA considerations
of Section 15.3.1 — often forms the basis for deciding how many factors m
to use in the model, especially for pricing derivatives with strong correlation
dependence. For the reader’s guidance, we find that m = 5 to 10 suffices to
recover the full-rank correlation shape in most cases.

15.3.4.2 Poor Man’s Correlation PCA

For the case where the p × p correlation matrix R is well-represented by a
rank-m representation of the form (15.22), it may sometimes be sufficiently
accurate to compute the loading matrix D by a simpler algorithm based on
standard PCA applied directly to the correlation matrix. Specifically, suppose
that we as a first step compute

Rm = EmΛmE
⊤
m

where Λm is an m×m diagonal matrix of the m largest eigenvalues of R, and
Em is a p×mmatrix of eigenvectors corresponding to these eigenvalues. While
the error Rm −R minimizes a least-squares norm, Rm itself is obviously not
a valid approximation to the correlation matrix R as no steps were taken to
ensure that Rm has a unit diagonal. A simple way to accomplish this borrows
the ideas of Section 15.3.3 and writes

R ≈ r−1
m Rmr

−1
m (15.25)

where rm is a diagonal matrix with elements (rm)ii =
√

(Rm)ii, i = 1, . . . , p.
We note that this approximation sets the matrix D in (15.22) to

D = r−1
m Em

√
Λm.

It is clear that the difference between the “poor man’s” PCA result (15.25)
and the optimal result in Proposition 15.3.2 will generally be small if Rm is
close to having a unit diagonal, as the heuristic step taken in (15.25) will then
have little effect. For large, complex correlation matrices, however, unless m
is quite large, the optimal approximation in Proposition 15.3.2 will often be
quite different from (15.25).
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15.4 Pricing of European Options

The previous section laid the foundation for calibration of an LM model to
empirical forward curve correlation data, a topic that we shall return to in
more detail in Section 15.5. Besides correlation calibration, however, we need
to ensure that the forward rate variances implied by the LM model are in
line with market data. In most applications — and certainly in all those that
involve pricing and hedging of traded derivatives — this translates into a re-
quirement that the vectors λk(t) of the model are such that it will successfully
reproduce the prices of liquid plain-vanilla derivatives, i.e. swaptions and caps.
A condition for practical uses of the LM model is thus that we can find pric-
ing formulas for vanilla options that are fast enough to be embedded into an
iterative calibration algorithm.

15.4.1 Caplets

Deriving formulas for caplets is generally straightforward in the LM model, a
consequence of the fact that Libor rates — which figure directly in the payout
formulas for caps — are the main primitives of the LM model itself. Indeed,
the word “market” in the term “Libor market model” originates from the
ease with which the model can accommodate market-pricing of caplets by the
Black formula.

As our starting point here, we use the generalized version of the LM model
with skews and stochastic volatility; see (15.15) and (15.16). Other, simpler
models, are special cases of this framework, and the fundamental caplet pric-
ing methodology will carry over to these cases in a transparent manner. We
consider a c-strike caplet Vcaplet(·) maturing at time Tn and settling at time
Tn+1. That is,

Vcaplet (Tn+1) = τn (Ln(Tn) − c)
+
.

For the purpose of pricing the caplet, the m-dimensional Brownian motion
Wn+1(t) can here be reduced to one dimension, as shown in the following
result.

Proposition 15.4.1. Assume that the forward rate dynamics in the spot mea-
sure are as in (15.15)–(15.16), and that Assumption 15.2.7 holds. Then

Vcaplet(0) = P (0, Tn+1)τnETn+1

(
(Ln(Tn) − c)

+
)
,

where

dLn(t) =
√
z(t)ϕ (Ln(t)) ‖λn(t)‖ dY n+1(t), (15.26)

dz(t) = θ (z0 − z(t)) dt+ ηψ (z(t)) dZ(t),

and Y n+1(t) and Z(t) are independent scalar Brownian motions in measure
QTn+1 . Specifically, Y n+1(t) is given by
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Y n+1(t) =

∫ t

0

λn(s)⊤

‖λn(s)‖dW
n+1(s).

Proof. Y n+1(t) is clearly Gaussian, with mean 0 and variance
√
t, identifying

it as a Brownian motion such that ‖λn(t)‖ dY n+1(t) = λn(t)⊤dWn+1(t). The
remainder of the Proposition follows from the martingale property of Ln in
QTn+1 , combined with the assumed independence of the forward rates and the
z-process. ⊓⊔

While rather obvious, Proposition 15.4.1 is useful as it demonstrates that
caplet pricing reduces to evaluation of an expectation of (Ln(Tn) − c)+, where
the process for Ln is now identical to the types of scalar stochastic volatility
diffusions covered in detail in Chapters 9 and 10; the pricing of caplets can
therefore be accomplished with the formulas listed in these chapters. In the
same way, when dealing with LM models of the simpler local volatility type,
we compute caplet prices directly from formulas in Chapter 8.

15.4.2 Swaptions

Whereas pricing of caplets is, by design, convenient in LM models, swaption
pricing requires a bit more work and generally will involve some amount of
approximation if a quick algorithm is required. In this section, we will outline
one such approximation which normally has sufficient accuracy for calibration
applications. A more accurate (but also more complicated) approach can be
found in Chapter 16.

First, let us recall some notations. Let Vswaption(t) denote the time t value
of a payer swaption that matures at time Tj ≥ t, with the underlying security
being a fixed-for-floating swap making payments at times Tj+1, . . . , Tk, where
j < k ≤ N . We define an annuity factor for this swap as (see (5.8))

A(t) , Aj,k−j(t) =

k−1∑

n=j

P (t, Tn+1)τn, τn = Tn+1 − Tn. (15.27)

Assuming that the swap underlying the swaption pays a fixed coupon of c
against Libor flat, the payout of Vswaption at time Tj is (see Section 5.1.3)

Vswaption(Tj) = A(Tj) (S(Tj) − c)
+
.

where we have defined a par forward swap rate (see (5.10))

S(t) , Sj,k−j(t) =
P (t, Tj) − P (t, Tk)

A(t)
.

Assume, as in Section 15.4.1, that we are working in the setting of a stochas-
tic volatility LM model, of the type defined in Section 15.2.5; the procedure
we shall now outline will carry over to simpler models unchanged.
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Proposition 15.4.2. Assume that the forward rate dynamics in the spot mea-
sure are as in (15.15)–(15.16). Let QA be the measure induced by using A(t)
in (15.27) as a numeraire, and let WA be an m-dimensional Brownian motion
in QA. Then, in measure QA,

dS(t) =
√
z(t)ϕ (S(t))

k−1∑

n=j

wn(t)λn(t)⊤ dWA(t), (15.28)

where the stochastic weights are

wn(t) =
ϕ (Ln(t))

ϕ (S(t))
× ∂S(t)

∂Ln(t)
=
ϕ (Ln(t))

ϕ (S(t))
× S(t)τn

1 + τnLn(t)

×
[

P (t, Tk)

P (t, Tj) − P (t, Tk)
+

∑k−1
i=n τiP (t, Ti+1)

A(t)

]
. (15.29)

Proof. It follows from Lemma 5.2.4 that S(t) is a martingale in measure QA,
hence we know that the drift of the process for S(t) must be zero in this
measure. From its definition, S(t) is a function of Lj(t), Lj+1(t), . . . , Lk−1(t),
and an application of Ito’s lemma shows that

dS(t) =

k−1∑

n=j

√
z(t)ϕ (Ln(t))

∂S(t)

∂Ln(t)
λn(t)⊤dWA(t).

Evaluating the partial derivative proves the proposition. ⊓⊔
It should be immediately obvious that the dynamics of the par rate in

(15.28) are too complicated to allow for analytical treatment. The main culprit
are the random weights wn(t) in (15.29) which depend on the entire forward
curve in a complex manner. All is not lost, however, as one would intuitively
expect that S(t) is well-approximated by a weighted sum of its “component”
forward rates Lj(t), Lj+1(t), . . . , Lk−1(t), with weights varying little over time.
In other words, we expect that, for each n, ∂S(t)/∂Ln(t) is a near-constant
quantity.

Consider now the ratio ϕ (Ln(t)) /ϕ (S(t)) which multiplies ∂S(t)/∂Ln(t)
in (15.29). For forward curves that are reasonably flat and forward curve
movements that are predominantly parallel (which is consistent with our ear-
lier discussion in Section 15.3.1.1), it is often reasonable to assume that the
ratio is close to constant. This assumption obviously hinges on the precise
form of ϕ, but holds well for many of the functions that we would consider
using in practice. To provide some loose motivation for this statement, con-
sider first the extreme case where ϕ(x) = Const (i.e. the model is Gaussian)
in which case the ratio ϕ (Ln(t)) /ϕ (S(t)) is constant, by definition. Second,
let us consider the log-normal case where ϕ(x) = x. In this case, a parallel
shift h of the forward curve at time t would move the ratio to

Ln(t) + h

S(t) + h
=
Ln(t)

S(t)
+ h

S(t) − Ln(t)

S(t)2
+O(h2),
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which is small if the forward curve slope (and thereby S(t) − Ln(t)) is small.
As the ϕ’s that we use in practical applications are mostly meant to produce
skews that lie somewhere between log-normal and Gaussian ones, assuming
that ϕ (Ln(t)) /ϕ (S(t)) is constant thus appears reasonable.

The discussion above leads to the following approximation, where we
“freeze” the weights wn(t) at their time 0 values.

Proposition 15.4.3. The time 0 price of the swaption is given by

Vswaption(0) = A(0)EA
(
(S(Tj) − c)+

)
. (15.30)

Let wn(t) be as in Proposition 15.4.2 and set

λS(t) =
k−1∑

n=j

wn(0)λn(t),

The swap rate dynamics in Proposition 15.4.2 can then be approximated as

dS(t) ≈
√
z(t)ϕ (S(t)) ‖λS(t)‖ dY A(t), (15.31)

dz(t) = θ (z0 − z(t)) dt+ ηψ (z(t)) dZ(t),

where Y A(t) and Z(t) are independent scalar Brownian motions in measure
QA, and

‖λS(t)‖ dY A(t) =

k−1∑

n=j

wn(0)λn(t)⊤ dWA(t).

Proof. The equation (15.30) follows from standard properties of QA. The re-
mainder of the proposition is proven the same way as Proposition 15.4.1, after
approximating wn(t) ≈ wn(0). ⊓⊔

We emphasize that the scalar term ‖λS(·)‖ is purely deterministic, whereby
the dynamics of S(·) in the annuity measure have precisely the same form as
the Libor rate SDE in Proposition 15.4.1. Therefore, computation of the QA-
expectation in (15.30) can lean directly on the analytical results we established
for scalar stochastic volatility processes in Chapter 9 and, for simpler DVF-
type LM models, in Chapter 8. We review relevant results and apply them to
LM models in Chapter 16; here, to give an example, we list a representative
result for a displaced log-normal local volatility LM model.

Proposition 15.4.4. Let each rate Ln(·) follow a displaced log-normal process
in its own forward measure,

dLn(t) = (bLn(t) + (1 − b)Ln(0))λ(t)⊤ dWn+1, n = 1, . . . , N − 1.

Then the time 0 price of the swaption is given by

Vswaption(0) = A(0)cB(0, S(0)/b;Tj, c− S(0) + S(0)/b, bλS),
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where cB(. . . , σ) is the Black formula with volatility σ, see Remark 8.2.8, and
the term swap rate volatility λS is given by

λS =

(
1

Tj

∫ Tj

0

‖λS(t)‖2 dt

)1/2

,

with ‖λS(t)‖ defined in Proposition 15.4.3.

Proof. By Proposition 15.4.3, the approximate dynamics of S(·) are given by

dS(t) ≈ (bS(t) + (1 − b)S(0)) ‖λS(t)‖ dY A(t).

The result then follows by Proposition 8.2.12. ⊓⊔
While we do not document the performance of the approximation (15.31)

in detail here, many tests are available in the literature; see e.g. Andersen and
Andreasen [2000b], Rebonato [2002], and Glasserman and Merener [2001]. Suf-
fice to say that the approximation above is virtually always accurate enough
for the calibration purposes for which it was designed, particularly if we re-
strict ourselves to pricing swaptions with strikes close to the forward swap
rate. As mentioned above, should further precision be desired, one can turn
to the more sophisticated swaption pricing approximations that we discuss in
Chapter 16. Finally, we should note the existence of models where no approx-
imations are required to price swaptions; these so-called swap market models
are reviewed in Section 16.4.

15.4.3 Spread Options

When calibrating LM models to market data, the standard approach is to fix
the correlation structure in the model to match empirical forward rate corre-
lations. It is, however, tempting to consider whether one alternatively could
imply the correlation structure directly from traded market data, thereby
avoiding the need for “backward-looking” empirical data altogether. As it
turns out, the dependence of swaption and caps to the correlation structure
is, not surprisingly, typically too indirect to allow one to simultaneously back
out correlations and volatilities from the prices of these types of instruments
alone. To overcome this, one can consider amending the set of calibration
instruments with securities that have stronger sensitivity to forward rate cor-
relations. A good choice would here be to use yield curve spread options, a
type of security that we encountered earlier in Section 6.13.3. Spread options
are natural candidates, not only because their prices are highly sensitive to
correlation, but also because they are relatively liquid and not too difficult to
device approximate prices for in an LM model setting.

15.4.3.1 Term Correlation

Let S1(t) = Sj1,k1−j1(t) and S2(t) = Sj2,k2−j2(t) be two forward swap rates,
and assume that we work with a stochastic volatility LM model of type
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(15.15)–(15.16). Following the result of Proposition 15.4.3, for i = 1, 2 we
have, to good approximation,

dSi(t) ≡ O(dt) +
√
z(t)ϕ (Si(t)) λSi

(t)⊤ dWB(t), λSi
(t) ,

ki−1∑

n=ji

wSi,n(0)λn(t),

where WB is a vector-valued Brownian motion in the spot measure, and we
use an extended notation wSi,n to emphasize which swap rate a given weight
relates to. Notice the presence of drift terms, of order O(dt). The quadratic
variation and covariation of S1(t) and S2(t) satisfy

d〈S1(t), S2(t)〉 = z(t)ϕ (S1(t))ϕ (S2(t)) λS1(t)
⊤λS2(t) dt,

d〈Si(t)〉 = z(t)ϕ (Si(t))
2 ‖λSi

(t)‖2
dt, i = 1, 2,

and the instantaneous correlation is

Corr(dS1(t), dS2(t)) =
λS1(t)

⊤λS2(t)

‖λS1(t)‖ ‖λS2(t)‖
. (15.32)

Instead of the instantaneous correlation, in many applications we are nor-
mally more interested in an estimate for term correlation ρterm(·, ·) of S1 and
S2 on some finite interval [T ′, T ]. Formally, we define this time 0 measurable
quantity as

ρterm(T ′, T ) , Corr (S1(T ) − S1(T
′), S2(T ) − S2(T

′)) .

Ignoring drift terms and freezing the swap rates at their time 0 forward levels,
to decent approximation we can write

ρterm (T ′, T ) ≈ ϕ (S1(0))ϕ (S2(0))
∫ T

T ′
EB (z(t))λS1(t)

⊤λS2(t) dt

ϕ (S1(0))ϕ (S2(0))
∏2

i=1

√∫ T

T ′
EB (z(t)) ‖λSi

(t)‖2
dt

=

∫ T

T ′
λS1(t)

⊤λS2(t) dt√∫ T

T ′
‖λS1(t)‖2

dt

√∫ T

T ′
‖λS2(t)‖2

dt
, (15.33)

where we in the second equality have used that fact that the parametrization
(15.15) implies that, for all t ≥ 0,

EB (z(t)) = z0.

15.4.3.2 Spread Option Pricing

Consider a spread option paying at time T ≤ min(Tj1 , Tj2)

Vspread(T ) = (S1(T ) − S2(T ) −K)+ ,



andersen-piterbarg-book.com September 9, 2009

SA
M

PL
E

(c) Andersen, Piterbarg 2009 

570 15 The Libor Market Model I

such that
Vspread(0) = P (0, T )ET (S1(T ) − S2(T ) −K)

+
,

where, as always, ET denotes expectations in measure QT . An accurate (ana-
lytic) evaluation of this expected value is somewhat involved, and we postpone
it till Chapter 18. Here, as a preview, we consider a cruder approach which
may, in fact, be adequate for calibration purposes. We assume that the spread

ε(T ) = S1(T ) − S2(T )

is a Gaussian variable with mean

ET (ε(T )) = ET (S1(T )) − ET (S2(T )) .

In a pinch, the mean of ε(T ) can be approximated as S1(0) − S2(0), which
assumes that the drift terms of S1(·) and S2(·) in the T -forward measure are
approximately identical. For a better approximation, see Chapter 17. As for
the variance of ε(T ), it can be approximated in several different ways, but one
approach simply writes

VarT (ε(T )) ≈
2∑

i=1

ϕ (Si(0))2 z0

∫ T

0

‖λSi
(t)‖2 dt

− 2ρterm(0, T )z0

2∏

i=1

ϕ (Si(0))

(∫ T

0

‖λSi
(t)‖2

dt

)1/2

. (15.34)

With these approximations, the Bachelier formula (8.15) yields

Vspread(0) = P (0, T )

√
VarT (ε(T )) (dΦ(d) + φ(d)) , d =

ET (ε(T )) −K√
VarT (ε(T ))

.

(15.35)

15.5 Calibration

15.5.1 Basic Principles

Suppose that we have fixed the tenor structure, have decided upon the num-
ber of factors m to be used, and have selected the basic form (e.g. DVF or
SV) of the LM model that we are interested in deploying. Suppose also, for
now, that any skew functions and stochastic volatility dynamics have been
exogenously specified by the user. To complete our model specification, what
then remains is the fundamental question of how to establish the set of m-
dimensional deterministic volatility vectors λk(t), k = 1, 2, . . . , N − 1, that
together determine the overall correlation and volatility structure of forward
rates in the model.
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As evidenced by the large number of different calibration approaches pro-
posed in the literature, there are no precise rules for calibration of LM models.
Still, certain common steps are nearly always invoked:

• Prescribe the basic form of ‖λk(t)‖, either through direct parametric as-
sumptions, or by introduction of discrete time- and tenor-grids.

• Use correlation information to establish a map from ‖λk(t)‖ to λk(t).
• Choose the set of observable securities against which to calibrate the

model.
• Establish the norm to be used for calibration.
• Recover λk(t) by norm optimization.

In the next few sections, we will discuss these steps in sequence. In doing
so, our primary aim is to expose a particular calibration methodology that
we personally prefer for most applications, rather than give equal mention
to all possible approaches that have appeared in the literature. We note up
front that our discussion is tilted towards applications that ultimately involve
pricing and hedging of exotic Libor securities (see e.g. Chapters 19 and 20).

15.5.2 Parameterization of ‖λk(t)‖

For convenience, let us write

λk(t) = h(t, Tk − t), ‖λk(t)‖ = g (t, Tk − t) , (15.36)

for some functions h : R
2
+ → R

m and g : R
2
+ → R+ to be determined. We

focus on g in this section, and start by noting that many ad-hoc parametric
forms for this function have been proposed in the literature. A representative
example is the following 4-parameter specification, due to Rebonato [1998]:

g (t, x) = g(x) = (a+ bx)e−cx + d, a, b, c, d ∈ R+. (15.37)

We notice that this specification is time-stationary in the sense that ‖λk(t)‖
does not depend on calendar-time t, but only on the remaining time to matu-
rity (Tk−t) of the forward rate in question. While attractive from a perspective
of smoothness of model volatilities, assumptions of perfect time-stationarity
will generally not allow for a sufficiently accurate fit to market prices. To
address this, some authors have proposed “separable” extensions of the type

g(t, x) = g1(t)g2(x), (15.38)

where g1 and g2 are to be specified separately. See Brace et al. [1996] for an
early approach along these lines.

For the applications we have in mind, relying on separability or parametric
forms is ultimately too inflexible, and we seek a more general approach. For
this, let us introduce a rectangular grid of times and tenors {ti} × {xj}, i =
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1, . . . , Nt, j = 1, . . . , Nx; and an Nt×Nx-dimensional matrix G. The elements
Gi,j will be interpreted as

g(ti, xj) = Gi,j . (15.39)

When dimensioning the grid {ti} × {xj}, we would normally8 require that
t1 + xNx

≥ TN , to ensure that all forwards in the Libor forward curve are
covered by the table; beyond this, there need not be any particular relationship
between the grid and the chosen tenor structure, although we find it convenient
to ensure that ti +xj ∈ {Tn} as long as ti +xj ≤ TN — a convention we adopt
from now on. Note that the bottom right-hand corner of the grid contains
Libor maturities beyond that of our tenor structure and would effectively be
redundant.

A few further comments on the grid-based approach above are in order.
First, we notice that both time-stationary and separable specifications along
the lines of (15.37) and (15.38) can be emulated closely as special cases of the
grid-based approach. For instance, the parametric specification (15.37) would
give rise to a matrix G where

Gi,j = (a+ bxj)e
−cxj + d,

i.e. all rows would be perfectly identical. We also point out that free parame-
ters to be determined here equate all non-superfluous elements in G. In prac-
tice Nt and Nx would often both be around 10-15, so even after accounting
for the fact that the bottom-right corner of G is redundant, the total num-
ber of free parameters to be determined is potentially quite large. To avoid
overfitting, additional regularity conditions must be imposed — an important
point to which we return in Section 15.5.6.

15.5.3 Interpolation on the Whole Grid

Suppose that we have somehow managed to construct the matrix G in (15.39),
i.e. we have uncovered ‖λk(t)‖ = g (t, Tk − t) for the values of t and x = Tk− t
on the grid {ti}× {xj}. The next step is to construct ‖λk(t)‖ for all values of
t and k, k = 1, . . . , N − 1.

It is common9 to assume that for each k, the function ‖λk(t)‖ is piece-wise
constant in t, with discontinuities at Tn, n = 1, . . . , k − 1,

‖λk(t)‖ =
k∑

n=1

1{Tn−1≤t<Tn} ‖λn,k‖ =
k∑

n=1

1{q(t)=n} ‖λn,k‖ . (15.40)

In this case, we are left with constructing the matrix ‖λn,k‖ from G, for all 1 ≤
n ≤ k ≤ N − 1. This is essentially a problem of two-dimensional interpolation

8An alternative would be to rely on extrapolation.
9A more refined approach, especially for low values of time-to-maturity, is ad-

visable for some applications where the fine structure of short-term volatilities is
important. See the brief discussion in Remark 16.1.1.
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(and, perhaps, extrapolation if the {ti}× {xj} does not cover the whole tenor
structure). Simple, robust schemes such as separate t- and x-interpolation of
low order seem to perform well, whereas high-order interpolation (cubic or
beyond) may lead to undesirable effects during risk calculations.

Hence, the main decision that need to be made is the choice of the order of
interpolation, either 0 for piecewise constant or 1 for piecewise linear, for each
of the dimensions t and x. Suppose, for concreteness, that linear interpolation
in both dimensions is chosen. Then for each n, k (1 ≤ n ≤ k ≤ N −1) we have
the following scheme

‖λn,k‖ = w++Gi,j + w+−Gi,j−1 + w−+Gi−1,j + w−−Gi−1,j−1, (15.41)

where, denoting τn,k = Tk − Tn−1, we have

i = min {a : ta ≥ Tn−1} , j = min {b : xb ≥ τn,k} ,

w++ =
(Tn−1 − ti−1) (τn,k − xj−1)

(ti − ti−1) (xj − xj−1)
, w+− =

(Tn−1 − ti−1) (xj − τn,k)

(ti − ti−1) (xj − xj−1)
,

w−+ =
(ti − Tn−1) (τn,k − xj−1)

(ti − ti−1) (xj − xj−1)
, w−− =

(ti − Tn−1) (xj − τn,k)

(ti − ti−1) (xj − xj−1)
.

Apart from the order of interpolation, we can also choose which volatilities
we actually want to interpolate. To explain, let us recall from Chapters 8 and
9 that we often normalize the local volatility function in such a way that
φ(Ln(0)) ≈ Ln(0). Then, ‖λk(·)‖’s have the dimensionality of log-normal, or
percentage, volatilities, and (15.41) defines interpolation in log-normal Libor
volatilities. This is not the only choice, and using volatilities that are scaled
differently in the interpolation could sometimes lead to smoother results. To
demonstrate the basic idea, let us fix p, 0 ≤ p ≤ 1. Then we can replace (15.41)
with

Lk(0)1−p ‖λn,k‖ = w++Ln(i,j)(0)1−pGi,j + w+−Ln(i,j−1)(0)1−pGi,j−1

+ w−+Ln(i−1,j)(0)1−pGi−1,j + w−−Ln(i−1,j−1)(0)1−pGi−1,j−1, (15.42)

where the indexing function n(i, j) is defined by Tn(i,j) = ti + xj . For p = 0,
this can be interpreted as interpolation in Gaussian10 volatilities (see Re-
mark 8.2.9). For arbitrary p, the formula (15.42) specifies interpolation in
“CEV” volatilities.

Finally, note that even if we use linear interpolation between the knot
points (either in t or x or both), it is normally better to use constant extrap-
olation before the initial t1 and x1 and after the final tNt

and xNx
.

10When applied to interest rates, Gaussian volatilities are often called basis-point,
or bp, volatilities.
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15.5.4 Construction of λk(t) from ‖λk(t)‖

Suppose the values of volatility norm ‖λn,k‖ are known on the full grid 1 ≤ n ≤
k ≤ N − 1. In our method, for each Tn, the components of the m-dimensional
λk(Tn) vectors are obtained from instantaneous Libor rate volatilities ‖λn,k‖
for k ≥ n, and instantaneous correlations of Libor rates fixing on or after
Tn. The procedure is similar in spirit to the one we employed previously for
parameterizing multi-factor Gaussian short rate models in Section 13.1.7. So,
with the calendar time fixed at some value Tn, we introduce an (N − n) ×
(N − n) instantaneous correlation matrix R (Tn), with elements

(R (Tn))i,j = Corr (dLi (Tn−) , dLj (Tn−)) , i, j = n, . . . , N − 1.

The correlation matrix would, in many applications, be computed from
an estimated parametric form, such as those covered in Section 15.3.2.
Furthermore, we define a diagonal volatility matrix c(Tn) with elements
‖λn,n‖, ‖λn,n+1‖, . . . , ‖λn,N−1‖ along its diagonal. That is,

(c (Tn))j,j = ‖λn,n+j−1‖ , j = 1, . . . , N − n,

with all other elements set to zero. Given R (Tn) and c (Tn), an instantaneous
covariance matrix11 C (Tn) for forward rates on the grid can now be computed
as

C (Tn) = c (Tn)R (Tn) c (Tn) . (15.43)

Let us define H (Tn) to be an (N − n) ×m matrix composed by stacking
each dimension of h (Tn, Tn+j−1) (see 15.36) side by side, with j running on
the grid:

(H (Tn))j,i = hi (Tn, Tn+j−1) , j = 1, . . . , N − n, i = 1, . . . ,m.

Then, it follows that we should have

C (Tn) = H (Tn)H (Tn)
⊤
. (15.44)

Equations (15.43) and (15.44) specify two different representations of the co-
variance matrix, and we want them to be identical, i.e.

H (Tn)H (Tn)
⊤

= c (Tn)R (Tn) c (Tn) , (15.45)

which gives us a way to construct the H (Tn) matrix, and thereby the vectors
h (Tn, Tn+j−1) for all values of n, j on the full grid 1 ≤ n ≤ N − 1, 1 ≤
j ≤ N − n. Assuming, as before, piecewise constant interpolation of λk(t)
for t between knot dates {Ti}, the full set of factor volatilities λk(t) can be
constructed for all t and Tk.

11Earlier results show that the true instantaneous covariance matrix for forward
rates may involve DVF- or SV-type scales on the elements of c. For the purposes of
calibration of λk, we omit these scales.
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As written, equation (15.45) will normally not have a solution as the left-
hand side is rank-deficient, whereas the right-hand side will typically have
full rank. To get around this, we can proceed to apply PCA methodology, in
several different ways. We discuss two methods below.

15.5.4.1 Covariance PCA

In this approach, we apply PCA decomposition to the entire right-hand side
of (15.45), writing

c (Tn)R (Tn) c (Tn) ≈ em (Tn)Λm (Tn) em (Tn)
⊤
,

where Λm (Tn) is an m ×m diagonal matrix of the m largest eigenvalues of
c (Tn)R (Tn) c (Tn), and em (Tn) is an (N − n) × m matrix of eigenvectors
corresponding to these eigenvalues. Inserting this result into (15.45) leads to

H (Tn) = em (Tn)
√
Λm (Tn). (15.46)

As discussed in Chapter 4, this approximation is optimal in the sense of min-
imizing the Frobenius norm on the covariance matrix errors.

15.5.4.2 Correlation PCA

An attractive alternative to the approach in Section 15.5.4.1 uses the correla-
tion PCA decomposition discussed in Section 15.3.4. Here we write

R (Tn) = D (Tn)D (Tn)
⊤
, (15.47)

for an (N − n) × m matrix D found by the techniques in Section 15.3.4.
Inserting this into (15.45) yields

H (Tn) = c (Tn)D (Tn) . (15.48)

In computing the matrixD, we would normally use the result from Proposition
15.3.2, which would minimize the Frobenius norm on correlation matrix errors.

15.5.4.3 Discussion and Recommendation

Many papers in the literature focus on the method in Section 15.5.4.1 (e.g.
Sidenius [2000], and Pedersen [1998]), but we nevertheless strongly prefer the
approach in Section 15.5.4.2 for calibration applications. Although performing
the PCA decomposition (as in Proposition 15.3.2) of a correlation matrix is
technically more difficult than the same operation on a covariance matrix, the
correlation PCA is independent of the c matrix and as such will not have to
be updated when we update guesses for the G matrix (on which c depends)
in a calibration search loop. When the correlation matrix R (Tn) originates
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from a parametric form independent of calendar time (which we recommend),
the matrix D in (15.47) will, in fact, need estimation only once, at a minimal
computational overhead cost. In comparison, the covariance PCA operation
will have to be computed (N − 1) times — once for each time Tn in the
time grid — every time G gets updated. We also notice that the fact that
D (Tn)D (Tn)⊤ has a unit diagonal will automatically ensure that the total
forward rate volatility will be preserved if m is changed; this is not the case
for covariance PCA, where the total volatility of forward rates will normally
increase as m is increased, ceteris paribus.

If the complexity of the optimal PCA algorithm in Proposition 15.3.2 of
Section 15.3.4 is deemed too egregious, the simplified approach of Section
15.3.4.2 could be used instead. It shares the performance advantages of the
“true” correlation PCA as it only needs to be run once outside the calibra-
tion loop, but its theoretical deficiencies suggest that its use should, in most
circumstances, be limited to the case where the correlations are themselves
calibrated, rather than exogenously specified by the user. We return to the
concept of correlation calibration in Section 15.5.9.

15.5.5 Choice of Calibration Instruments

In a standard LM model calibration, we choose a set of swaptions and caps
(and perhaps Eurodollar options) with market-observable prices; these prices
serve as calibration targets for our model. The problem of determining pre-
cisely which caps and swaptions should be included in the calibration is a
difficult and contentious one, with several opposing schools of thought rep-
resented in the literature. We shall spend this section12 outlining the major
arguments offered in the literature as well as our own opinion on the subject.
Before commencing on this, we emphasize that the calibration algorithm we
develop in this book accommodates arbitrary sets of calibration instruments
and as such will work with any selection philosophy.

One school of thought — the fully calibrated approach — advocates cali-
brating an LM model to a large set of available interest options, including both
caps and swaptions in the calibration set. When using grid-based calibration,
this camp would typically recommend using at-the-money swaptions with ma-
turities and tenors chosen to coincide with each point in the grid. That is, if
Ts is the maturity of a swaption and Te is the end-date of its underlying swap,
then we would let Ts take on all values in the time grid {ti}, while at the same
time letting Te − Ts progress through all values13 of the tenor grid {xj}. On
top of this, one would often add at-the-money caps at expiries ranging from
T = t1 to T = tNt

.

12We also revisit the subject in the context of callable Libor exotics in Section 19.1.
13One would here limit Ts to be no larger than TN , so the total number of swap-

tions would be less that Nt · Nx. See our discussion of redundant grid entries in
Section 15.5.2.
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The primary advantage of the fully calibrated approach is that a large num-
ber of liquid volatility instruments are consistently priced within the model.
This, in turn, gives us some confidence that the vanilla option market is appro-
priately “spanned” and that the calibrated model can be used on a diverse set
of exotic securities. In vega-hedging an exotic derivative, one will undoubtedly
turn to swaptions and caps, so mispricing these securities in the model would
be highly problematic.

Another school of thought — the parsimonious approach — judiciously
chooses a small subset of caps and swaptions in the market, and puts sig-
nificant emphasis on specification of smooth and realistic term structures
of forward rate volatilities. Typically this will involve imposing strong time-
homogeneity assumptions, or observed statistical relationships, on the λk(t)
vectors. The driving philosophy behind the parsimonious approach is the ob-
servation that, fundamentally, the price of a security in a model is equal to
the model-predicted cost of hedging the security over its lifetime. Hedging
profits in the future as specified by the model are, in turn, directly related to
the forward rate volatility structures that the model predicts for the future.
For these model-predicted hedging profits to have any semblance to the ac-
tual realized hedging profits, the dynamics of the volatility structure in the
model should be a reasonable estimate of the actual dynamics. In many cases,
however, our best estimate of future volatility structures might be today’s
volatility structures (or those we have estimated historically), suggesting that
the evolution of volatility should be as close to being time-homogeneous as
possible. This can be accomplished, for instance, by using time-homogeneous
mappings such as (15.37) or similar.

The strong points of the parsimonious approach are, of course, weak ones
of the fully calibrated approach. Forward rate volatilities produced by the
fully calibrated model can easily exhibit excessively non-stationary behavior,
impairing the performance of dynamic hedging. On the other hand, the in-
evitable mis-pricings of certain swaptions and/or caps in the parsimonious
approach are troublesome. In a pragmatic view of a model as a (sophisti-
cated, hopefully) interpolator that computes prices of complex instruments
from prices of simple ones, mis-pricing of simple instruments obviously does
not inspire confidence in the prices returned for complex instruments. As dis-
cussed, the parsimonious approach involves an attempt to identify a small
enough set of “relevant” swaptions and caps that even a time-homogeneous
model with a low number of free parameters can fit reasonably well, but it can
often be very hard to judge which swaption and cap volatilities are important
for a particular exotic security. In that sense, a fully calibrated model is more
universally applicable, as the need to perform trade-specific identification of
a calibration set is greatly reduced.

It is easy to imagine taking both approaches to the extremes to generate
results that would convincingly demonstrate the perils of using either of them.
To avoid such pitfalls we recommend looking for an equilibrium between the
two. While we favor the fully calibrated approach, it is clear to us that, at the
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very least, it should be supplemented by an explicit mechanism to balance
price precision versus regularity (e.g. smoothness and time-homogeneity) of
the forward rate volatility functions. In addition, one should always perform
rigorous checks of the effects of calibration assumptions on pricing and hedging
results produced by the model. These checks should cover, as a minimum,
result variations due to changes in

• Number of factors used (m).
• Relative importance of recovering all cap/swaption prices vs. time-

homogeneity of the resulting volatility structure.
• Correlation assumptions.

A final question deserves a brief mention: should one calibrate to either
swaptions or caps, or should one calibrate to both simultaneously? Followers
of the parsimonious approach will typically argue that there is a persistent ba-
sis between cap and swaption markets, and any attempt to calibrate to both
markets simultaneously is bound to distort the model dynamics. Instead, it
is argued, one should only calibrate to one of the two markets, based on an
analysis of whether the security to be priced is more cap- or swaption-like. Pre-
sumably this analysis would involve judging whether either caps or swaptions
will provide better vega hedges for the security in question. The drawback of
this approach is obvious: many complicated interest rates securities depend on
the evolution of both Libor rates as well as swap rates and will simultaneously
embed “cap-like” and “swaption-like” features.

To avoid discarding potentially valuable information from either swaptions
or cap markets, we generally recommend that both markets be considered in
the calibration of the LM model. However, we do not necessarily advocate that
both types of instruments receive equal weighting in the calibration objective
function; rather, the user should be allowed some mechanism to affect the
relative importance of the two markets. We return to this idea in the next
section.

15.5.6 Calibration Objective Function

As discussed above, several issues should be considered in the choice of a cal-
ibration norm, including the smoothness and time-stationarity of the λk(t)
functions; the precision to which the model can replicate the chosen set of
calibration instruments; and the relative weighting of caps and swaptions. To
formally state a calibration norm that will properly encompass these require-
ments, assume that we have chosen calibration targets that include NS swap-
tions, Vswpt,1, Vswpt,2, . . . , Vswpt,NS

, and NC caps, Vcap,1, Vcap,2, . . . , Vcap,NC
.

Strategies for selecting these instruments were discussed in the previous sec-
tion. We let V̂ denote their quoted market prices and, adopting the grid-based
framework from Section 15.5.2, we let V (G) denote their model-generated
prices as functions of the volatility grid G as defined as in Section 15.5.2. We
introduce a calibration objective function I as
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I(G) =
wS

NS

NS∑

i=1

(
V swpt,i(G) − V̂swpt,i

)2

+
wC

NC

NC∑

i=1

(
V cap,i(G) − V̂cap,i

)2

+
w∂t

NxNt

Nt∑

i=1

Nx∑

j=1

(
∂Gi,j

∂ti

)2

+
w∂x

NxNt

Nt∑

i=1

Nx∑

j=1

(
∂Gi,j

∂xj

)2

+
w∂t2

NxNt

Nt∑

i=1

Nx∑

j=1

(
∂2Gi,j

∂t2i

)2

+
w∂x2

NxNt

Nt∑

i=1

Nx∑

j=1

(
∂2Gi,j

∂x2
j

)2

, (15.49)

where wS , wC , w∂t, w∂x, w∂t2,w∂x2 ∈ R+ are exogenously specified weights. In
(15.49) the various derivatives of the elements in the table G are, in practice, to
be interpreted as discrete difference coefficients on neighboring table elements
— see (15.50) below for an example definition14.

As we have defined it, I(G) is a weighted sum of i) the mean-squared swap-
tion price error; ii) the mean-squared cap price error; iii) the mean-squared
average of the derivatives of G with respect to calendar time; iv) the mean-
squared average of the second derivatives ofG with respect to calendar time; v)
the mean-squared average of the derivatives of G with respect to forward rate
tenor; and vi) the mean-squared average of the second derivatives of G with
respect to forward rate tenor. The terms in i) and ii) obviously measure how
well the model is capable of reproducing the supplied market prices, whereas
the remaining four terms are all related to regularity. The term iii) measures
the degree of volatility term structure time-homogeneity and penalizes volatil-
ity functions that vary too much over calendar time. The term iv) measures
the smoothness of the calendar time evolution of volatilities and penalizes de-
viations from linear evolution (a straight line being perfectly smooth). Terms
v) and vi) are similar to iii) and iv) and measure constancy and smoothness
in the tenor direction. In (15.49), the six weights wS , wC , w∂t, w∂x, w∂t2,w∂x2

determine the trade-off between volatility smoothness and price accuracy, and
are normally to be supplied by the user based on his or her preferences. In
typical applications, the most important regularity terms are those scaled
by the weights w∂t and w∂x2 which together determine the degree of time-
homogeneity and tenor-smoothness in the resulting model.

We should note that there are multiple ways to specify smothness criteria,
with (15.49) being one of many. For example, as we generalized the basic
log-normal interpolation scheme (15.41) to allow for interpolation in “CEV”
volatilities in (15.42), we can adjust the definition of smoothness to be in
terms of compatible quantities. In particular, instead of using

w∂x

NxNt

Nt∑

i=1

Nx∑

j=2

(
Gi,j −Gi,j−1

xj − xj−1

)2

(15.50)

as implicit in (15.49) for the tenor-smothness term, we could use

14Depending on how table boundary elements are treated, notice that the range
for i and j may not always be as stated in (15.49).
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w∂x

NxNt

Nt∑

i=1

Nx∑

j=2

(
Ln(i,j)(0)1−pGi,j − Ln(i,j−1)(0)1−pGi,j−1

xj − xj−1

)2

(15.51)

for some p, 0 ≤ p ≤ 1. The case of p = 0 would then correspond to smoothing
basis-point Libor volatilities rather than log-normal Libor volatilities.

As written, the terms of the calibration norm that measure precision in
cap and swaption pricing involve mean-squared errors directly on prices. In
practice, however, the error function is often applied to some transform of out-
right prices, e.g. implied volatilities. For an SV-type LM model, for instance,
we could institute a pre-processing step where the market price of each swap-
tion V̂swpt,i would be converted into a constant implied “skew-volatility” λ̂Si

,
in such a way that the scalar SDE for the swap rate Si underlying the swaption
Vswpt,i

dSi(t) =
√
z(t)λ̂Si

ϕ (Si(t)) dYi(t),

would reproduce the observed swaption market price. Denoting by λSi
(G) the

corresponding model volatility of the swap rate Si (as given by, for example,
Proposition 15.4.4) and repeating this exercise for all caps and swaptions in
the calibration set, we obtain an alternative calibration norm definition where
the cap and swaption terms in (15.49) are modified as follows:

I(G) =
wS

NS

NS∑

i=1

(
λSi

(G) − λ̂Si

)2

+
wC

NC

NC∑

i=1

(
λCi

(G) − λ̂Ci

)2

+ · · · . (15.52)

The advantage of working with implied volatilities in the precision norm is two-
fold. First, the relative scaling of individual swaptions and caps is more natu-
ral; when working directly with prices, high-value (long-dated) trades would
tend to be overweighted relative to low-value (short-dated) trades15. Second,
in many models computation of the implied volatility terms λSi

and λCi
can

often be done by simple time-integration of (combinations of) λk(t) (see e.g.
Proposition 15.4.4) avoiding the need to apply a possibly time-consuming op-
tion pricing formula to compute the prices V swpt,i and V cap,i. Considerable
attention to this particular issue was paid in Section 10.3 (for SV models)
and Section 8.6.2 (for DVF models), and we review relevant results and apply
them to LM models in Chapter 16.

The quality-of-fit objective can be expressed in terms of scaled volatilities,
which improves performance sometimes. Following the ideas developed for
interpolation (15.42) and smoothing (15.51), we could express the fit objective
as

I(G) =
wS

NS

NS∑

i=1

(
Si(0)1−p

(
λSi

(G) − λ̂Si

))2

+ · · · ,

15Another approach to producing more equitable scaling involves using relative
(=percentage) price errors, rather than absolute price errors.
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for a given p, 0 ≤ p ≤ 1. Taking this idea further we note that a more refined
structure of mean-squared weights in the definition of calibration norm is
possible. For instance, rather than weighting all swaptions equally with the
term wS , one could use different weights for each swaption in the calibration
set. Similarly, by using node-specific weights on the derivatives of the entries
in G one may, say, express the view that time-homogeneity is more important
for large t than for small t.

15.5.7 Sample Calibration Algorithm

At this point, we are ready to state our full grid-based calibration algorithm.
We assume that a tenor structure and a time/tenor grid {ti}×{xj} have been
selected, as have the number of Brownian motions (m), a correlation matrix
R, and the set of calibration swaptions and caps. In addition, the user must
select the weights in the calibration norm I in (15.49) or (15.52). Starting
from some guess for G, we then run the following iterative algorithm:

1. Given G, interpolate using (15.41) or (15.42) to obtain the full norm
volatility grid ‖λn,k‖ for all Libor indices k = 1, . . . , N − 1 and all ex-
piry indices n = 1, . . . , k.

2. For each n = 1, . . . , N − 1, compute the matrix H(Tn), and ultimately
volatility loadings λk(Tn), from ‖λn,k‖, k ≥ n, by PCA methodology,
using either (15.46) or (15.48).

3. Given λk(·) for all k = 1, . . . , N − 1, use the formulas in Sections 15.4.1
and 15.4.2 to compute model prices for all swaptions and caps in the
calibration set.

4. Establish the value of I(G) by direct computation of either (15.49) or
(15.52).

5. Update G and repeat Steps 1–4 until I(G) is minimized.

Step 5 in the above algorithm calls for the use of a robust high-dimensional
numerical optimizer. Good results can, in our experience, be achieved with sev-
eral algorithms, including the Spellucci algorithm16, the Levenberg-Marquardt
algorithm, and the downhill simplex method (the last two can be found in
Press et al. [1992]). These, and many alternative algorithms, are available in
standard numerical packages, such as IMSL17 and NAG18. On a standard PC,
a well-implemented calibration algorithm should generally complete in well
under a minute from a cold start (i.e. where we do not have a good initial
guess for G) for, say, a 40 year model with quarterly Libor rolls.

16donlp2 SQP/ECQP algorithm, available on http://www.mathematik.

tu-darmstadt.de:8080/ags/ag8/Mitglieder/spellucci de.html.
17http://www.imsl.com/.
18http://www.nag.com/.
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15.5.8 Speed-Up Through Sub-Problem Splitting

An LM model calibration problem involves a substantial number of free input
variables to optimize over, namely all elements of the matrix G. In a typical
setup, the number of such variables may range from a few dozen to a few
hundred. As the number of terms, or “targets”, in the calibration norm is of
the same order of magnitude, we are dealing with a fairly sizable optimiza-
tion problem. While modern optimization algorithms implemented on modern
hardware can successfully handle the full-blown problem, it is still of interest
to examine whether there are ways of to improve computational efficiency.
For instance, if we could split the optimization problem into a sequence of
smaller sub-problems solved separately and sequentially, the performance of
the algorithm would typically improve. Indeed, imagine for illustrative pur-
poses that we have an optimization problem with m = m1m2 variables and
computational complexity of the order19 O

(
m2
)

= O
(
m2

1m
2
2

)
. However, if we

could find the solution by sequentially solving m1 problems of m2 variables
each, then the computational cost would be m1O

(
m2

2

)
, yielding savings of

the order O (m1).
Our ability to split the problem into sub-problems typically relies on ex-

ploring its particular structure, i.e. the relationship between input variables
and targets. If, for example, target 1 depends on variable 1 but not — or only
mildly — on other variables, then it makes sense to find the optimal value for
the variable 1 by optimizing for target 1 while keeping other variables con-
stant, and so on. Fortunately, the LM model optimization problem presents
good opportunities for this type of analysis. First, recall that the main cali-
bration targets for the problem are the differences in market and model prices
(or implied volatilities) of caps and swaptions. Let us consider a swaption
with expiry Tj and maturity Tn; let i be such that Tj = ti. Then, as follows
from the swaption approximation formula (15.31), the model volatility for this
swaption depends on λk(t)’s for t ∈ [0, ti] and for k = j, . . . , n− 1. Hence, the
part of the calibration norm associated with the price fit of the swaption will
depend on the first i rows of the matrix G only. This observation suggests
splitting the calibration problem into a collection of “row by row” calibration
problems.

To simplify notations, we assume that the set of fit targets consists of all
swaptions with expiries ti and tenors xl, i = 1, . . . , Nt, l = 1, . . . , Nx (a “full”
calibration set). In a row-by-row calibration algorithm, the first row of the
matrix G is calibrated to all Nx swaptions with expiry t1, then the second
row of G is calibrated to the swaptions with expiry t2, and so on.

As we emphasized earlier, having regularity terms in the calibration norm
is important to ensure a smooth solution. Fortunately, regularity terms can

19As many of the algorithms we have in mind compute, at the very least, the
sensitivity of each calibration target to each input variable, the computational com-
plexity is at least O(m2); if the order of complexity is higher, the case for problem
splitting is even more compelling.
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generally be organized in the same row-by-row format as the precision terms.
For instance, the regularity terms in the tenor direction naturally group into
row-specific collections. As for the terms controlling the regularity of the ma-
trix G in calendar time t, when optimizing on time slice ti, we would only
include in the norm the terms that involve rows of G with index less than or
equal to i. We trust that the reader can see how to arrange this, and omit
straightforward details.

Computational savings from the row by row scheme could be substantial —
for a 40 year model with quarterly Libor rolls, a well-tuned algorithm should
converge in less than a second or two. There are, however, certain drawbacks
associated with problem splitting. In particular, as the calibration proceeds
from one row to the next, the optimizer does not have the flexibility to adjust
previous rows of the matrix G to the current row of swaption volatilities. This
may result in a tell-tale “ringing” pattern of the Libor volatilities in the time
direction, as the optimizer attempts to match each row of price targets through
excessively large moves in the elements of G, in alternating up and down di-
rections. Judicious application of regularity terms in the optimization norm
can, however, help control this behavior, and overall the row-by-row scheme
performs well. We recommend it as the default method for most applications,
but note that sometimes a combination of full-blown and row-by-row calibra-
tion is the best choice. For instance, one could use full-blown optimization to
fundamentally calibrate G, and use some version of row-by-row optimization
when examining the effect of making small perturbations to input prices (e.g.
when computing vegas). We discuss this idea in Chapter ??.

Returning to the row-by-row calibration idea, one can try to take it fur-
ther and split the calibration to an ever-finer level, eventually fitting each
individual price target — a given caplet or swaption volatility, say — sepa-
rately, by moving just a single element of the matrix G. This should seemingly
work because the (ti, xl+1)-swaption volatility depends on the same elements
of matrix G as the (ti, xl)-swaption volatility plus Gi,l+1. (This is not entirely
true doe to some grid interpolation effects, but the general idea is correct). So,
in principle, Gi,l+1 can be found by just solving a quadratic equation, i.e. in
closed form. For full details we refer the reader to Brigo and Mercurio [2001]
where this bootstrap, or cascade algorithm is described in detail. While this
may appear to be a strong contender for practical LM calibration — full cali-
bration is performed by just solving NtNx quadratic equations — the scheme
generally does not work for practically-sized problems. The cascade calibration
suffers strongly from the ringing problem discussed above, and the quadratic
equations typically fail to have a solution for swaption targets with just a
few years of total maturity. While it is possible to include regularity terms
that preserve the closed-form nature of the solution, the ringing problem is
difficult to remedy and calibration to long-dated options is rarely feasible. We
find this to be true, even if one applies ad-hoc remediation methods proposed
by various authors (see e.g. Brigo and Morini [2006]).
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15.5.9 Correlation Calibration to Spread Options

In the calibration algorithm in Section 15.5.7 the matrix R is specified ex-
ogenously and would typically originate from an empirical analysis similar to
that in Section 15.3.2. As we discussed earlier in Section 15.4.3, an alternative
approach attempts to imply R directly from market data for spread options.
Less is known about the robustness of calibrations based on this approach,
but this shall not stop us from listing a possible algorithm.

First, to make the problem tractable, we assume that the matrix R is time-
homogeneous and specified as some parametric function of a low-dimension
parameter-vector ξ,

R = R(ξ).

Possible parameterizations include those listed in Section 15.3.2. We
treat ξ as an unknown vector, to be determined in the calibration
procedure along with the elements of the volatility matrix G. For
this, we introduce a set of market-observable spread option prices
V̂spread,1, V̂spread,2, . . . , V̂spread,NSP

, their corresponding model-based prices
V spread,1(G, ξ), V spread,2(G, ξ), . . . , V spread,NSP

(G, ξ), and update the norm I
in (15.49) (or (15.52)) to the norm I∗(G, ξ), where20

I∗(G, ξ) = I(G, ξ) +
wSP

NSP

NSP∑

i=1

(
V spread,i(G, ξ) − V̂spread,i

)2

. (15.53)

The algorithm in Section 15.5.7 proceeds as before with a few obvious changes;
we list the full algorithm here for completeness.

1. Given G, interpolate using (15.41) or (15.42) to obtain the full norm
volatility grid ‖λn,k‖ for all Libor indices k = 1, . . . , N − 1 and all ex-
piry indices n = 1, . . . , k.

2. Given ξ, compute R = R(ξ).
3. For each n = 1, . . . , N − 1 and using R(ξ), compute the matrix H , and

ultimately volatility loadings λk(Tn), from ‖λn,k‖, k ≥ n, by PCA method-
ology, using either (15.46) or (15.48).

4. Given λk(·) for all k = 1, . . . , N − 1, use the formulas in Sections 15.4.1,
15.4.2 and 15.4.3 to compute model prices for all swaptions, caps and
spread options in the calibration set.

5. Establish the value of I∗(G, ξ) by direct computation of (15.53).
6. Update G and repeat Steps 1–5 until I(G, ξ) is minimized.

When using a correlation PCA algorithm in Step 3, in practice one may
find that it is most efficient to use the “poor man’s” approach in Section
15.3.4.2, rather than the slower expression listed in Proposition 15.3.2. Indeed,
as long as the spread option prices ultimately are well-matched, we can be

20Note that our original norm I now also is a function of ξ, since cap and swaption
prices depend on the correlation matrix R.
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confident that our model has a reasonable correlation structure, irrespective
of which PCA technique was used.

As was the case for our basic algorithm, let us note that it may be use-
ful to transform spread option prices into implied volatilities or, even better,
into implied term correlations21 when evaluating the mean-squared error. For
spread options, a definition of implied term correlation can be extracted from
the simple Gaussian spread approach in Section 15.4.3, equations (15.34) and
(15.35) or, for more accurate formulas, using the results of Chapter 18 and in
particular Sections 18.4.2 and 18.9.1.

Finally, we should note that the optimization problem embedded in the
algorithm above can be quite challenging to solve in practice. To stabilize
the numerical solution, it may be beneficial to employ a split calibration ap-
proach, where we first freeze correlation parameters ξ and then optimize G
over the parts of the calibration norm that do not involve spread options. Then
we freeze G at its optimum and optimize ξ over the parts of the calibration
norm that do not involve caps and swaptions. This alternating volatility- and
correlation-calibration is then repeated iteratively until (hopefully) conver-
gence. A similar idea can be employed when calibrating models to a volatility
smile; see Section 16.2.3 for LM model applications and Section 17.2.3 for
applications to vanilla models.

15.5.10 Volatility Skew Calibration

The calibration algorithm we have discussed so far will normally take at-the-
money options as calibration targets when establishing the λk(t) functions. Es-
tablishing the volatility smile away from at-the-money strikes must be done in
a separate step, through specification of a DVF skew function ϕ and, possibly,
a stochastic volatility process z(t). For the time-stationary specifications of
these two mechanisms that we considered in Section 15.2.5, best-fitting to the
volatility skew can be done relatively easily — in fact, it is probably best to
leave the parameters22 of the skew function ϕ as a free parameter for trader’s
input. We study the problem of volatility smile calibration for LM models in
more detail in Chapter 16.

21By representing spread options through implied term correlations, the informa-
tion extracted from spread options in the correlation is more “orthogonal” to that
extracted from caps and swaptions, something that can help improve the numerical
properties of the calibration algorithm, particularly if split calibration approach, an
approach we shall consider in a moment, is used.

22Assuming that there are only a few parameters that define the shape of the func-
tion. We strongly recommend using simple skew functions that could be described
by a single-parameter family, such as linear or power functions.
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15.6 Monte Carlo Simulation

Once the LM model has been calibrated to market data, we can proceed to use
the parameterized model for the pricing and risk management of non-vanilla
options. In virtually all cases, pricing of such options will involve numerical
methods. As the LM model involves a very large number of Markov state vari-
ables — namely the full number of Libor forward rates on the yield curve plus
any additional variables used to model stochastic volatility — finite difference
methods are rarely applicable (but see the brief discussion in Section 16.3
for a special case), and we nearly always have to rely on Monte Carlo meth-
ods. As we discussed in Chapter 4, the main idea of Monte Carlo pricing is
straightforward: i) simulate independent paths of the collection of Libor rates
through time; ii) for each path, sum the numeraire-deflated values of all cash
flows generated by the specific interest rate dependent security at hand; iii)
repeat i)-ii) many times and form the average. Proper execution of step i) is
obviously key to this algorithm, and begs an answer to the following question:
given a probability measure and the state of the Libor forward curve at time
t, how do we move the entire Libor curve (and the numeraire) forward to time
t +∆, ∆ > 0, in a manner that is consistent with the LM model dynamics?
We address this question here.

15.6.1 Euler-Type Schemes

Assume that we stand at time t, and have knowledge of forward Libor rates
maturing at all dates in the tenor structure after time t. We wish to devise
a scheme to advance time to t + ∆ and construct a sample of Lq(t+∆)(t +
∆), . . . , LN−1(t +∆). Notice that q(t+∆) may or may not exceed q(t); if it
does, some of the front-end forward rates expire and “drop off” the curve as
we move to t+∆.

For concreteness, assume for now that we work in the spot measure QB

in which case Lemma 15.2.3 tells us that general LM model dynamics are of
the form

dLn(t) = σn(t)⊤
(
µn(t) dt+ dWB(t)

)
, µn(t) =

n∑

j=q(t)

τjσj(t)

1 + τjLj(t)
, (15.54)

where the σn(t) are adapted vector-valued volatility functions and WB is an
m-dimensional Brownian motion in measure QB. The simplest way of drawing
an approximate sample L̂n(t + ∆) for Ln(t + ∆) would be to apply a first-
order Euler-type scheme. Drawing on results in Section 4.2.3, Euler (15.55)
and log-Euler (15.56) schemes for (15.54) are, for n = q(t+∆), . . . , N − 1,
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L̂n(t+∆) = L̂n(t) + σn(t)⊤
(
µn(t)∆ +

√
∆Z

)
, (15.55)

L̂n(t+∆) = L̂n(t) exp

{
σn(t)⊤

L̂n(t)

((
µn(t) − 1

2

σn(t)

L̂n(t)

)
∆+

√
∆Z

)}
,

(15.56)

where Z is a vector of m independent N (0, 1) Gaussian draws23. For specifi-
cations of σn(t)⊤ that are close to proportional in Ln(t) (e.g. the log-normal
LM model), we would expect the log-Euler scheme (15.56) to produce lower
biases than the Euler scheme (15.55). As discussed in Chapter 4, the log-Euler
scheme will keep forward rates positive, whereas the Euler scheme will not.

Both schemes (15.55), (15.56) as shown advance time only by a single
time-step, but creation of a full path of forward curve evolution through
time is merely a matter of repeated application24 of the single-period step-
ping schemes on a (possibly non-equidistant) time line t0, t1, . . .. When work-
ing in the spot measure, it is preferable to have the tenor structure dates
T1, T2, . . . , TN−1 among the simulation dates, in order to keep track of the
spot numeraire B(t) without having to resort to extrapolations. In fact, it
is common in practice to set ti = Ti, which, unless accrual periods τi are
unusually long or volatilities unusually high, will normally produce an accept-
able discretization error for many types of LM models. See e.g. Andersen
and Andreasen [2000b] and Glasserman and Zhao [2000] for some numerical
investigations of the Euler bias.

Remark 15.6.1. When t coincides with a date in the tenor structure, t = Tk,
say, q(t) will equal Tk+1 due to our definition of q being right-continuous. As

a result, when stepping forward from time t = Tk, L̂k(Tk) will not be included
in the computation of the drifts µn, n ≥ k+1. As it turns out, this convention
reduces discretization bias, a result that makes sense when we consider that
the contribution from Lk(t) to the drifts drops to zero at time Tk + dt in a
continuous-time setting.

While Euler-type schemes such as (15.55) and (15.56) are not very sophis-
ticated and, as we recall from Chapter 4, result in rather slow convergence of
the discretization bias (O (∆)), these schemes are appealing in their straight-
forwardness and universal applicability. Further, they serve to highlight the
basic structure of an LM simulation and the computational effort in advancing
the forward curve.

23In addition to these time-stepping schemes for the forward rates, it may be
necessary to simultaneously evolve stochastic volatility variables if one works with
models such as those in Section 15.2.5.

24A different Z is needed at each time-step, needless to say.
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15.6.1.1 Analysis of Computational Effort

Focusing on the straight Euler scheme (15.55), a bit of contemplation reveals
that the computational effort involved in advancing Ln is dominated by the
computation of µn(t) which, in a direct implementation of (15.54), involves

m · (n− q(t) + 1) = O(mn)

operations for a given value of n. To advance allN−q(t+∆) forwards, it follows
that the computational effort is O

(
mN2

)
for a single time-step. Assuming that

our simulation time line coincides with the tenor structure dates, generation
of a full path of forward curve scenarios from time 0 to time TN−1 will thus
require a total computational effort of O

(
mN3

)
. As N is often big (e.g. a 25-

year curve of quarterly forward rates will have N = 100), a naive application
of the Euler scheme will often require considerable computing resources.

As should be rather obvious, however, the computational order of O(mN3)
is easy to improve on, as there is no need to spend O(mN) operations on the
computation of each µn. Instead, we can invoke the recursive relationship

µn(t) = µn−1(t) +
τnσn(t)

1 + τnL̂n(t)
, (15.57)

which allows us to compute all µn, n = q(t+∆), . . . , N−1, by an O(mN)-step
iteration starting from

µq(t+∆)(t) =

q(t+∆)∑

j=q(t)

τjσj(t)

1 + τjL̂j(t)
.

In total, the computational effort of advancing the full curve one time-step
will be O(mN), and the cost of taking N such time steps will be O(mN2) —
and not O(mN3).

We summarize this result in a lemma.

Lemma 15.6.2. Assume that we wish to simulate the entire Libor forward
curve on a time line that contains the dates in the tenor structure and has
O(N) points. The computational effort of Euler-type schemes — such as
(15.55) and (15.56) — is O(mN2).

Remark 15.6.3. The results of the lemma can be verified to hold for any of
probability measures we examined in Section 15.2.2.

We note that when simulating in other measures, the starting point of
the iteration for µn will be measure-dependent. For instance, in the terminal
measure,

µn(t) = −
N−1∑

j=n+1

τjσj(t)

1 + τj L̂j(t)
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and the equation (15.57) still holds. Now, however, the iteration starts at

µN−1(t) = 0,

and proceeds backwards through µN−2, µN−3, . . . , µq(t+∆). We leave it to the
reader to carry out the analysis for other probability measures.

15.6.1.2 Long Time-Steps

Most exotic interest rate derivatives involve revolving cash flows paid on a
tightly spaced schedule (e.g. quarterly). As our simulation time line should
always include dates on which cash flows take place, the average time spacing
used in path generation will thus normally, by necessity, be quite small. In
certain cases, however, there may be large gaps between cash flow dates, e.g.
when a security is forward-starting or has an initial lock-out period. When
simulating across large gaps, we may always choose to sub-divide the gap into
smaller time-steps, thereby retaining a tightly spaced simulation time line. To
save computational time, however, it is often tempting to cover large gaps in
a small number of coarse time-steps, in order to lower overall computation
effort. Whether such coarse stepping is possible is, in large part, a question of
how well we can keep the discretization bias under control as we increase the
time-step, something that is quite dependent on the magnitude of volatility
and the particular formulation of the LM model under consideration. Section
15.6.2 below deals with this question and offers strategies to improve on the
basic Euler scheme. Here, we instead consider the pure mechanics of taking
large time-steps, i.e. steps that skip past several dates in the tenor structure.

Assume that we stand at the j-th date in the tenor structure, t = Tj,
and wish to simulate the forward curve to time Tk, k > j + 1, in a sin-
gle step. As noted earlier, the mere notion of skipping over dates in the
tenor structure makes usage of the spot measure QB inconvenient, as the
numeraire B(Tk) cannot be constructed without knowledge of the realiza-
tions of Lj+1(Tj+1),Lj+2(Tj+2),. . . , Lk−1(Tk−1); in turn, numeraire-deflation
of cash flows is not possible and derivatives cannot be priced. Circumventing
this issue, however, is merely a matter of changing the numeraire from B to
an asset that involves no roll-over in the interval [Tj, Tk]. One such asset is
P (t, TN ), the choice of which corresponds to running our simulated paths in
the terminal measure. In particular, we recognize that

P (Tk, TN) =

N−1∏

n=k

1

1 + τnLn(Tk)
, (15.58)

which depends only on the state of the forward curve at time Tk. Another
valid numeraire asset would be P j(t), as defined in Section 15.2.2:

P j(t) =

{
B(t), t ≤ Tj ,
B(Tj)P (t, TN )/P (Tj, TN), t > Tj .
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The numeraire P j(Tk) can always be computed without knowledge of
Lj+1(Tj+1), . . . , Lk−1(Tk−1), as long as B(Tj) is known25. In the measure
induced by this asset, the LM model dynamics are

dLn(t) =




σn(t)⊤

(
−∑N−1

l=n+1
τlσl(t)

1+τlLl(t)
dt+ dW

j
(t)
)
, t > Tj,

σn(t)⊤
(∑n

l=q(t)
τlσl(t)

1+τlLl(t)
dt+ dW

j
(t)
)
, t ≤ Tj.

15.6.1.3 Notes on the Choice of Numeraire

Given our discussion above, the terminal measure may strike the reader as
an obvious first choice for simulating the LM model — after all, simulations
in the terminal measure will never fail to be meaningful, irrespective of the
coarseness of the simulation time line. Other issues, however, come in play
here as well. For instance, updating the numeraire P (t, TN ) from one time-step
to the next is generally a more elaborate operation that updating the spot
numeraire B(t): the former requires multiplying together O(N) terms (see
(15.58)), whereas the latter only involves multiplying B at the previous time-
step with a single discount bond price. Also, the statistical sample properties
of price estimators in the terminal measure may be inferior to those in the
spot measure, in the sense that the Monte Carlo noise is larger in the terminal
measure. Glasserman and Zhao [2000] list empirical results indicating that this
is, indeed, often the case for many common interest rate derivatives. A formal
analysis of this observation is complex, but we can justify it by considering the
pricing of a very simple derivative security, namely a discount bond maturing
at some arbitrary time Tk in the tenor structure. In the spot measure, we
would estimate the price of this security by forming the sample average of
random variables

P (Tk, Tk)/B(Tk) = B(Tk)−1 =
1

∏k−1
n=0 (1 + τnLn(Tn))

, (15.59)

whereas in the terminal measure we would form the sample average of random
variables

P (Tk, Tk)/P (Tk, TN) = P (Tk, TN)−1 =

N−1∏

n=k

(1 + τnLn(Tk)) . (15.60)

Assuming that Libor rates stay positive, the important thing to notice is that
the right-hand side of (15.59) is bounded from above by 1, whereas the right-
hand side of (15.60) can grow arbitrarily large. For moderate to high Libor

25This precludes the existence of other large gaps in the simulation time line prior
to time Tj . When using a hybrid measure such as P j , we would need to position Tj

at the start of the first simulation time step that spans multiple dates in the tenor
structure.
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rate volatilities, we would thus intuitively expect price estimators based on
(15.60) to typically have higher sample error.

As discussed in Section 15.6.1.2, sometimes it is mechanically inconvenient
to simulate in the spot measure, due to a desire to take large time-steps. In
these cases, usage of a hybrid numeraire P that switches from B(t) to P (t, TN)
at the latest possible date may be a useful strategy.

15.6.2 Other Simulation Schemes

When simulating on a reasonably tight time schedule, the accuracy of the
Euler or log-Euler schemes is adequate for most applications. However, as
discussed above, we may occasionally be interested in using coarse time-steps
in some parts of the path generation algorithm, requiring us to pay more
attention to the discretization scheme. Generic techniques for these purposes
were introduced in detail in Chapter 4; we proceed to discuss a few of these
in the context of LM models. We also consider the case where special-purpose
schemes happen to exist for the discretization of the stochastic integral in the
forward rate dynamics.

15.6.2.1 Special-Purpose Schemes with Drift Predictor-Corrector

In integrated form, the general LM dynamics in (15.54) become

Ln(t+∆) = Ln(t) +

∫ t+∆

t

σn(u)⊤µn(u) du+

∫ t+∆

t

σn(u)⊤dWB(u)

, Ln(t) +Dn(t, t+∆) +Mn(t, t+∆),

where Mn(t, t+∆) is a zero-mean martingale increment and Dn(t, t+∆) is the
increment of a predictable process. In many cases of practical interest, high-
performance special-purpose schemes exist for simulation ofMn(t, t+∆). This,
for instance, is the case for the SV-LM model specification (Section 15.2.5),
as discussed in detail in Section 10.5. In such cases, we obviously will choose
to generate Mn(t, t+∆) from the special-purpose scheme, and it thus suffices
to focus on the term Dn(t, t+∆). A simple approach is to use Euler stepping:

L̂n(t+∆) = L̂n(t) + σn(t)⊤µn(t)∆+ M̂n(t, t+∆), (15.61)

where M̂n(t, t+∆) is generated by a special-purpose scheme.
The drift adjustments in (15.61) are explicit in nature, as they are based

only on the forward curve at time t. To incorporate information from time
t+∆, we can use the predictor-corrector scheme from Section 4.2.5, which for
(15.61) will take the two-step form
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Ln(t+∆) = L̂n(t) + σn

(
t, L̂(t)

)⊤
µn

(
t, L̂(t)

)
∆+ M̂n(t, t+∆), (15.62)

L̂n(t+∆) = L̂n(t) + θPCσn

(
t, L̂(t)

)⊤
µn

(
t, L̂(t)

)
∆

+ (1 − θPC)σn

(
t+∆,L(t+∆)

)⊤
µn

(
t+∆,L(t+∆)

)
∆

+ M̂n(t, t+∆), (15.63)

where θPC is a parameter in [0, 1] that determines the amount of implicit-
ness we want in our scheme (θPC = 1: fully explicit; θPC = 0: fully im-
plicit). In practice, we would nearly always go for the balanced choice of
θPC = 1/2. In (15.62)–(15.63), L denotes the vector of all Libor rates,

L(t) = (L1(t), . . . , LN−1(t))
⊤

(with the convention that Li(t) ≡ Li(Ti) for

i < q(t)), and L̂, L defined accordingly. In particular, the short-hand notation

µn

(
t, L̂(t)

)

is used to indicate that µn (and σn) may depend on the state of the entire
forward curve at time t.

The technique above was based on a standard (additive) Euler scheme. If
one is more inclined to use a multiplicative scheme in the vein of (15.56), we
may replace the explicit scheme (15.61) with

L̂n(t+∆) = L̂n(t) exp

{
σn(t)⊤

L̂n(t)
µn(t)∆

}
M̂n(t, t+∆), (15.64)

where M̂n(t, t+∆) now has been re-defined to be a unit-mean positive random
variable, often a discretized multiplicative increment of an exponential mar-
tingale. The construction of a predictor-corrector extension of (15.64) follows
closely the steps above, and is left for the reader.

While the weak convergence order of simulation schemes may not be af-
fected by predictor-corrector schemes (Section 4.2.5), experiments show that
(15.62)–(15.63) often will reduce the bias significantly relative to a fully ex-
plicit Euler scheme. Some results for the simple log-normal LM model can
be found in Hunter et al. [2001] and Rebonato [2002]. As the computational
effort of computing the predictor-step is not insignificant, the speed-accuracy
trade-off must be evaluated on a case-by-case basis. Section 15.6.2.3 below
discusses a possible modification of the predictor-corrector scheme to improve
efficiency.

15.6.2.2 Euler Scheme with Predictor-Corrector

In simulating the term Mn(t, t+∆) in the predictor-corrector scheme above,
we can always use an Euler scheme, i.e. in (15.61) we set
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M̂n(t, t+∆) = σn(t)⊤
√
∆Z,

where Z is an m-dimensional vector of standard Gaussian draws. As we recall
from Chapter 4, however, it may also be useful to apply the predictor-corrector
principle to the martingale part of the forward rate evolution itself, although
this would involve the evaluation of derivatives of the LM volatility term with
respect to the forward Libor rates; see Chapter 4 for details.

15.6.2.3 Lagging Predictor-Corrector Scheme

Drift calculations, as was pointed out earlier, are the most computationally
expensive part of any Monte Carlo scheme for a Libor market model. The
predictor-corrector scheme of (15.62)–(15.63) requires two calculations of the
drift and is thus considerably more expensive than the standard Euler scheme.
We often prefer to use a “lagging” modified predictor-corrector scheme which,
as it turns out, allows us to realize most of the benefits if the predictor-
corrector scheme, while keeping computational costs comparable to the stan-
dard Euler scheme.

Recall the definition of the drift of the n-th Libor rate under the spot
measure,

µn(t) =

n∑

j=q(t)

τjσj(t)

1 + τjLj(t)
.

Note that the drift depends on the values of the Libor rates of indices less
than or equal to n. Let us split the contributions coming from Libor rates
with an index strictly less than n, and the n-th Libor rate,

µn(t) =

n−1∑

j=q(t)

τjσj(t)

1 + τjLj(t)
+

τnσn(t)

1 + τnLn(t)
.

Denoting t′ = t + ∆, we observe that if we simulate the Libor rates in the
order of increasing index, then by the time we need to simulate Ln(t′), we
have already simulated Lj(t

′), j = q(t), . . . , n− 1. Hence, it is natural to use
the predictor-corrector technique for the part of the drift that depends on
Libor rates maturing strictly before Tn, while treating the part of the drift
depending on the n-th Libor rate explicitly. This idea leads to the following
scheme (compare to (15.61) or (15.62)–(15.63) with θPC = 1/2),

L̂n(t′) = L̂n(t) + σn(t)⊤

×


1

2

n−1∑

j=q(t)

(
τjσj(t)

1 + τjL̂j(t)
+

τjσj(t
′)

1 + τjL̂j(t′)

)
+

τnσn(t)

1 + τnL̂n(t)


 ∆+ M̂n(t, t′).

(15.65)
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Importantly, the drifts required for this scheme also satisfy a recursive rela-
tionship, allowing for an efficient update. Defining

α̂n(t′) =

n∑

j=q(t)

(
τjσj(t)

1 + τjL̂j(t)
+

τjσj(t
′)

1 + τj L̂j(t′)

)
,

we see that, clearly,

α̂n(t′) = α̂n−1(t
′) +

τnσn(t)

1 + τnL̂n(t)
+

τnσn(t′)

1 + τnL̂n(t′)
,

and (15.65) can be rewritten as

L̂n(t′) = L̂n(t) + σn(t)⊤

(
1

2
α̂n−1(t

′) +
τnσn(t)

1 + τnL̂n(t)

)
∆+ M̂n(t, t′). (15.66)

The scheme above can easily be applied to other probability measures. In
fact, since in the terminal measure the drift

µn(t) = −
N−1∑

j=n+1

τjσj(t)

1 + τjLj(t)
,

does not depend on Ln(t) in the first place, no “lag” is required in this measure.
Indeed, we simply re-define

α̂n(t′) = −
N−1∑

j=n+1

(
τjσj(t)

1 + τjL̂j(t)
+

τjσj(t
′)

1 + τjL̂j(t′)

)

and, starting from n = N − 1 and working backwards, use the scheme

L̂n(t′) = L̂n(t) + σn(t)⊤
1

2
α̂n(t′)∆+ M̂n(t, t′). (15.67)

Notice that α̂n now satisfies the recursion

α̂n−1(t
′) = α̂n(t′) − τnσn(t)

1 + τnL̂n(t)
− τnσn(t′)

1 + τnL̂n(t′)
,

to be started at α̂N−1(t) = 0.
The modifications of (15.66) and (15.67) to accommodate log-Euler step-

ping are trivial and left to the reader to explore. The lagging predictor-
corrector scheme in the spot Libor measure has, as far as we know, never
appeared in the literature, and its theoretical properties are not well-known
(although the terminal measure version was studied in Joshi and Stacey [2008]).
Still, its practical performance is very good and we do not hesitate recommend-
ing it as the default choice for many applications.
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15.6.2.4 Further Refinements of Drift Estimation

For large time-steps, it may be useful to explicitly integrate the time-
dependent parts of the drift, rather than rely on pure Euler-type approxi-
mations. Focusing on, say, (15.61), assume that we can write

σn(u)⊤µn(u) ≈ g (u,L(t)) , u ≥ t, (15.68)

for a function g that depends on time as well as the state of the forwards
frozen at time t. Then,

Dn(t, t+∆) =

∫ t+∆

t

σn(u)⊤µn(u) du ≈
∫ t+∆

t

g (u,L(t)) du. (15.69)

As g evolves deterministically for u > t, the integral on the right-hand size
can be evaluated either analytically (if g is simple enough) or by numerical
quadrature. If doing the integral numerically, a decision must be made on the
spacing of the integration grid. For volatility functions that are piecewise flat
on the tenor-structure — which is a common assumption in model calibration
— it is natural to align the grid with dates in the tenor structure.

To give an example, consider the DVF LM model, where we get (in the
terminal measure, for a change)

σn(u)⊤µn(u) = −ϕ (Ln(u))λn(u)⊤
N−1∑

j=n+1

τjλj(u)ϕ (Lj(u))

1 + τjLj(u)

≈ −ϕ (Ln(t))λn(u)⊤
N−1∑

j=n+1

τjλj(u)ϕ (Lj(t))

1 + τjLj(t)
, u ≥ t,

which is of the form (15.68). For stochastic volatility models we might, say,
additionally assume that the process z(t) would stay on its forward path, i.e.
z(u) ≈ EB

t (z(u)) which can often be computed in closed form for models of
interest. For instance, for the SV model in (15.15) we have

EB
t (z(u)) = z0 + (z(t) − z0)e

−θ(u−t).

The approach in (15.69) easily combines with predictor-corrector logic, i.e. we
could write

Dn(t, t+∆) ≈ θPC

∫ t+∆

t

g (u,L(t)) du

+ (1 − θPC)

∫ t+∆

t

g
(
u,L(t+∆)

)
du, (15.70)

where Li(t + ∆) has been found in a predictor-step using (15.69) in (15.61).
The “lagged” schemes in Section 15.6.2.3 work equally well. Formula (15.69)
also applies to exponential-type schemes such as (15.64), with or without
predictor-corrector adjustment; we leave details to the reader.
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15.6.2.5 Brownian-Bridge Schemes and Other Ideas

As a variation on the predictor-corrector scheme, we could attempt a fur-
ther refinement to take into account variance of the Libor curve between the
sampling dates t and t + ∆. Schemes attempting to do so by application of
Brownian bridge techniques26 were proposed in Andersen [2000b] and Pietersz
et al. [2004], among others. While performance of these schemes is mixed —
tests in Joshi and Stacey [2008] show rather unimpressive results in compar-
ison to simpler predictor-corrector schemes — the basic idea is sufficiently
simple and instructive to merit a brief mention. In a nutshell, the Brownian
bridge approach aims to replace in (15.69) all forward rates L(t) with expecta-
tion of L(u), conditional upon the forward rates ending up at L(t+∆), with
L(t+∆) generated in a predictor-step. Under simplifying assumptions on the
dynamics of Ln(t), a closed-form expression is possible for this expectation.

Proposition 15.6.4. Assume that

dLn(t) ≈ σn(t)⊤ dW (t),

where σn(t) is deterministic and W (t) is an m-dimensional Brownian motion
in some probability measure P. Let

vn(t, T ) =

∫ T

t

‖σn(s)‖2
ds, T ≥ t.

Then, for u ∈ [t, t+∆],

E (Ln(u)|Ln(t), Ln(t+∆)) = Ln(t) +
vn(t, u)

vn(t, t+∆)
(Ln(t+∆) − Ln(t)) .

Proof. We first state a very useful general result for multi-variate Gaussian
variables.

Lemma 15.6.5. Let X = (X1, X2)
⊤

be a partitioned vector of Gaussian vari-
ables, where X1 and X2 are themselves vectors. Assume that the covariance
matrix between Xi and Xj is Σi,j such that the total covariance matrix of X
is

Σ =

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)

(where, of course, Σ2,1 = Σ⊤
1,2). Let the vector means of Xi be µi, i = 1, 2,

and assume that Σ2,2 is invertible. Then X1|X2 = x is Gaussian:

(X1|X2 = x) ∼ N
(
µ1 +Σ1,2Σ

−1
2,2(x− µ2), Σ1,1 −Σ1,2Σ

−1
2,2Σ2,1

)
.

26See Section 4.2.9 for an introduction to the Brownian bridge, albeit for a some-
what different application.
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In Lemma 15.6.5, set X1 = Ln(u) − Ln(t) and X2 = Ln(t + ∆) − Ln(t).
Note that µ1 = µ2 = 0 and

Σ1,2 = Σ2,1 = Σ1,1 = vn(t, u), Σ2,2 = vn(t, t+∆).

The result of Proposition 15.6.4 follows. ⊓⊔
We can use the result of Proposition 15.6.4 in place of the ordinary correc-

tor step. For instance, in (15.70) we write

Dn(t, t+∆) ≈
∫ t+∆

t

g (u,m(u)) du,

where, for m(u) = (m1(u), . . . ,mN−1(u)),

mi(u) = E
(
Li(u)|Li(t), Li(t+∆)

)

is computed according to Proposition 15.6.4 once Li(t+∆) has been sampled
in a predictor step.

In some cases, it may be more appropriate to assume that Ln is roughly
log-normal, in which case Proposition 15.6.4 must be altered slightly.

Lemma 15.6.6. Assume that

dLn(t)/Ln(t) ≈ σn(t)⊤ dW (t),

where σn is deterministic and W (t) is an m-dimensional Brownian motion
in some probability measure P. Then, for u ∈ [t, t+∆],

E (Ln(u)|Ln(t), Ln(t+∆)) = Ln(t)

(
Ln(t+∆)

Ln(t)

)vn(t,u)/vn(t,t+∆)

× exp

(
vn(t, u) (vn(t, t+∆) − vn(t, u))

2vn(t, t+∆)

)
,

where vn(t, T ) is given in Proposition 15.6.4.

Proof. Apply Lemma 15.6.5 to X1 = lnLn(u) − lnLn(t) and X2 = lnLn(t +
∆)− lnLn(t). To translate back to find the conditional mean of eX1 , one may

use the fact that E
(
ea+bY

)
= ea+b2/2 if Y is Gaussian N (0, 1). ⊓⊔

Joshi and Stacey [2008] investigate a number of other possible discretiza-
tion schemes for the drift term in the LM model, including ones that at-
tempt to incorporate information about the correlation between various for-
ward rates. In general, many of these schemes will result in some improvement
of the discretization error, but at the cost of more computational complexity
and effort. All things considered, we hesitate to recommend any of these meth-
ods (and this goes for the Brownian bridge scheme above) for general-purpose
use, as the bias produced by simpler methods is often adequate. If not, it
may, in fact, often be the case that we can insert a few extra simulation dates
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inside large gaps to bring down the bias, yet still spend less computational
time than we would if using a more complex method of bridging the gap in
a single step. Finally, we should note that most authors (including Joshi and
Stacey [2008]) exclusively examine simple log-normal models where the mar-
tingale component (Mn in the notation of Section 15.6.2.1) can be simulated
completely bias-free. When using more realistic models, this will not always
be the case, in which case high-precision simulation of the drift term Dn will
likely be a waste of time.

15.6.2.6 High-Order Schemes

Even with predictor-corrector adjustment, all Euler-type discretization
schemes are limited to a convergence order of ∆. To raise this, one possibility
is to consider higher-order schemes, such as the Milstein scheme and simi-
lar Taylor-based approaches; see Section 4.2.6 for details. Many high-order
schemes unfortunately become quite cumbersome to deal with for the type of
high-dimensional vector-SDE that arises in the context of LM models and, pos-
sibly as a consequence of this, there are currently very few empirical results in
the literature to lean on. One exception is Brotherton-Ratcliffe (Brotherton-
Ratcliffe [1997]) where a Milstein scheme has been developed for the basic
log-normal LM model with piecewise flat volatilities. The efficacy of this, and
similar high-order schemes, in the context of the generalized LM model would
obviously depend strongly on the particular choice of model formulation.

A simple alternative to classical Taylor-based high-order schemes involves
Richardson extrapolation based on prices found by simulating on two separate
time lines, one coarser than the other (see Section 4.2.7 for details). Andersen
and Andreasen [2000b] list some results for Richardson extrapolation, the
effect of which seems to be rather modest.

15.6.3 Martingale Discretization

Consider again the hybrid measure induced by the numeraire P̃n+1, defined
in Section 15.2.2. As discussed, one effect of using this measure is to ren-
der the process for the n-th forward Libor rate, Ln(t), a martingale. When
time-discretizing the LM model using, say, an Euler scheme, the martingale
property of Ln(t) is automatically preserved, ensuring that the expectation

of the discretized approximation to Ln(·), L̂n(·), will have expectation Ln(0),
with no discretization bias. Also, when using Monte Carlo to estimate the
price of the zero-coupon bond maturing at time Tn+1, we get

P (0, Tn+1) = P̃n+1(0)En+1(1),

which will (obviously) be estimated bias-free as well.
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As the discussion above highlights, it is possible to select a measure such
that a particular zero-coupon bond and a particular FRA will be priced bias-
free27 by Monte Carlo simulation, even when using a simple Euler scheme.
While we are obviously rarely interested in pricing zero-coupon bonds by
Monte Carlo methods, this observation can nevertheless occasionally help
guide the choice of simulation measure, particularly if, say, a security can be
argued to depend primarily on a single forward rate (e.g. caplet-like securities).
In practice, matters are rarely this clear-cut, and one wonders whether per-
haps simulation schemes exist that will simultaneously price all zero-coupon
bonds P (·, T1), P (·, T2), . . . , P (·, TN) bias-free. It should be obvious that this
cannot be accomplished by a simple measure-shift, but will require a more
fundamental change in simulation strategy.

15.6.3.1 Deflated Bond Price Discretization

Fundamentally, we are interested in a simulation scheme that by construction
will ensure that all numeraire-deflated bond prices are martingales. The eas-
iest way to accomplish this is to follow a suggestion offered by Glasserman
and Zhao [2000]: instead of discretizing the dynamics for Libor rates directly,
simply discretize the deflated bond prices themselves. To demonstrate, let us
consider the spot measure, and define

U(t, Tn+1) =
P (t, Tn+1)

B(t)
. (15.71)

Lemma 15.6.7. Let dynamics in the spot measure QB be as in Lemma 15.2.3.
The dynamics for deflated zero-coupon bond prices (15.71) are given by

dU(t, Tn+1)

U(t, Tn+1)
= −

n∑

j=q(t)

τj
U(t, Tj+1)

U(t, Tj)
σj(t)

⊤ dWB(t), n = q(t), . . . , N − 1.

(15.72)

Proof. We note that, by definition,

U(t, Tn+1) =
P (t, Tq(t))

∏n
j=q(t)

1
1+τjLj

P (t, Tq(t))B(Tq(t)−1)
=

∏n
j=q(t)

1
1+τjLj

B(Tq(t)−1)
,

where B(Tq(t)−1) is non-random at time t. It follows that

U(t, Tj+1)

U(t, Tj)
=

1

1 + τjLj(t)
.

U(t, Tn+1) must, by construction, be a martingale. An application of Ito’s
lemma to the diffusion term of U gives

27But not error-free, obviously — there will still be a statistical mean-zero error
on the simulation results. See Section 15.6.4 below.
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dU(t, Tn+1) = −U(t, Tn+1)
n∑

j=q(t)

τjσj(t)
⊤

1 + τjLj(t)
dWB(t),

and the lemma follows. ⊓⊔
Discretization schemes for (15.72) that preserve the martingale property

are easy to construct. For instance, we could use the log-Euler scheme

Û(t+∆,Tn+1) = Û(t, Tn+1) exp

(
−1

2
‖γn+1(t)‖2

∆+ γn+1(t)
⊤Z

√
∆

)
,

(15.73)
where, as before, Z is an m-dimensional standard Gaussian draw, and

γn+1(t) , −
n∑

j=q(t)

τj
Û(t, Tj+1)

Û(t, Tj)
σj(t). (15.74)

We have several remarks to the log-Euler scheme (15.73). First, for
models where interest rates cannot become negative, U(t, Tn+1)/U(t, Tn) =
P (t, Tn+1)/P (t, Tn) could not exceed 1 in a continuous-time model, so it might
be advantageous to replace (15.74) with

γn+1(t) , −
n∑

j=q(t)

τj max

(
Û(t, Tj+1)

Û(t, Tj)
, 1

)
σj(t),

as recommended in Glasserman and Zhao [2000]. Second, for computational
efficiency we should rely on iterative updating,

γn+1(t) = γn(t) − τn max

(
Û(t, Tn+1)

Û(t, Tn)
, 1

)
σn(t),

using the same arguments as those presented in Section 15.6.1.1. Third, once
Û(t+∆,Tn) has been drawn for all possible n, we can reconstitute the Libor
curve from the relation

L̂n(t+∆) =
Û(t+∆,Tn) − Û(t+∆,Tn+1)

τnÛ(t+∆,Tn+1)
, n = q(t+∆), . . . , N − 1.

(15.75)
For completeness, we note that dynamics of the deflated bond prices in

the terminal measure QTN can easily be derived to be

dU(t, Tn+1)

U(t, Tn+1)
=

N−1∑

j=n+1

τj
U(t, Tj+1)

U(t, Tj)
σj(t)

⊤ dWN (t), (15.76)

where we must now (re-)define U(t, Tn) as a forward bond price

U(t, Tn) = P (t, Tn, TN) = P (t, Tn)/P (t, TN).

Equation (15.76) can form the basis of a discretization scheme in much the
same manner as above.
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15.6.3.2 Comments and Alternatives

The discretization scheme presented above will preserve the martingale prop-
erty of all deflated bonds maturing in the tenor structure, and in this sense
can be considered arbitrage-free. The resulting lack of bias on bond prices,
however, does not necessarily translate into a lack of bias on any other deriva-
tive security price, e.g. a caplet or a swaption. In particular, we notice that
nothing in the scheme above will ensure that bond price moments of any order
other than one will be simulated accurately.

The extent of the bias induced by the scheme in Section 15.6.3.1 is specific
to the security and model under consideration. For instance, using a log-Euler
scheme for deflated bonds might work well in an LM model with rates that are
approximately Gaussian, but might work less well in a model where rates are
approximately log-normal. If results are disappointing, we can replace (15.73)
with another discretization of (15.72) (see Chapter 4 for many examples), or
we can try to discretize a quantity other than the deflated bonds U(t, Tn). The
latter idea is pursued in Glasserman and Zhao [2000], where several sugges-
tions for discretization variables are considered. For instance, one can consider
the differences

U(t, Tn) − U(t, Tn+1) (15.77)

which are martingales since the U ’s are. As follows from (15.75), discretizing
U(t, Tn) − U(t, Tn+1) is, in a sense, close to discretizing Ln itself which may
be advantageous. Joshi and Stacey [2008] contains some tests of discretization
schemes based on (15.77), but, again, only in a log-normal setting.

15.6.4 Variance Reduction

We recall from the discussion in Chapter 4 that the errors involved in Monte
Carlo pricing of derivatives can be split into two sources: the statistical Monte
Carlo error (the standard error); and a bias unique to the discretization scheme
employed. So far, our discussion has centered exclusively on the latter of these
two types of errors and we now wish to provide some observations about
the former. We should note, however, that it is difficult to provide generic
prescription for variance reduction techniques in the LM model, as most truly
efficient schemes tend be quite specific to the product being priced. We shall
offer several such product-specific variance reduction schemes in later chapters,
and here limit ourselves to rather brief suggestions.

We recall that Chapter 4 discussed three types of variance reduction tech-
niques: i) antithetic sampling; ii) control variates; and iii) importance sam-
pling. All have potential uses in simulation of LM models.

15.6.4.1 Antithetic Sampling

Application of antithetic sampling to LM modeling is straightforward. Using
the Euler scheme as an example, each forward rate sample path generated
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from the relation

L̂n(t+∆) = L̂n(t) + σn(t)⊤
(
µn(t)∆+

√
∆Z

)

is simply accompanied by a “reflected” sample path computed by flipping the
vector-valued Gaussian variable Z around the origin, i.e.

L̂(a)
n (t+∆) = L̂(a)

n (t) + σn(t)⊤
(
µ(a)

n (t)∆ −
√
∆Z

)
.

The reflection of Z is performed at each time-step, with both paths having

identical starting points, L̂
(a)
n (0) = L̂n(0) = Ln(0). Using antithetic variates

thus doubles the number of sample paths that will be generated from a fixed
budget of random number draws. In practice, the variance reduction associ-
ated with antithetic variates is often relatively modest.

15.6.4.2 Control Variates

As discussed in Chapter 4, the basic (product-based) control variate method
involves determining a set of securities (control variates) that i) have payouts
close to that of the instrument we are trying to price; and ii) have known means
in the probability measure in which we simulate. Obvious control variates in
the LM model include (portfolios of) zero-coupon bonds and caplets. Due to
discretization errors in generation of sample paths, we should note, however,
that the sample means of zero-coupon bonds and caplets will deviate from
their true continuous-time means with amounts that depend on the time-step
and the discretization scheme employed. This error will nominally cause a
violation of condition ii) — we are generally able only to compute in closed-
form the continuous-time means — but the effect is often benign and will
theoretically28 be of the same order as the weak convergence order of the
discretization scheme employed. Swaptions can also be included in the control
variate set, although additional care must be taken here due to the presence
of hard-to-quantify approximation errors in the formulas in Section 15.4.2.
See Jensen and Svenstrup [2003] for an example of using swaptions as control
variates for Bermudan swaptions.

An alternative interpretation of the control variate idea involves pricing a
particular instrument using, in effect, two different LM models, one of which
allows for an efficient computation of the instrument price, and one of which
is the true model we are interested in applying. We shall return to it in Chap-
ter 25.

Finally, the dynamic control variate method, based on the idea that an
(approximate) self-financed hedging strategy could be a good proxy for the
value of a security, is available for LMM models as well. The method was
developed in Section 4.4.3.2.

28Suppose that we estimate E(X) ≈ E(X ′ +Y ′−µY ), where µY = E(Y′)+O(∆p)
and E(X ′) = E(X) + O(∆p). Then clearly also E(X ′ + Y ′ − µY ) = E(X) + O(∆p).
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15.6.4.3 Importance Sampling

Importance sampling techniques have so far seen few applications in the sim-
ulation of LM models, with one exception: the simulation of securities with
a knock-out barrier. The basic idea is here that sample paths are generated
conditional on a barrier not being breached, ensuring that all paths survive to
maturity; this conditioning step induces a change of measure. We will expose
the details of this technique in Chapter 21, where we discuss the pricing of
the TARN product introduced in Section 6.15.2.


