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7.6.2.2 A Caveat About the Process Domain

Even though the skew averaging result is obtained in the small slope limit,
practical experience validates its broad applicability in option pricing prob-
lems. Some typical results can be found in Piterbarg [2005c] and Piterbarg
[2006]. Still, the equivalence between the original time-dependent model and
the time-averaged one should not be taken too far, as we now proceed to
demonstrate. For this, we focus on the simple displaced diffusion model from
the previous section, i.e. we consider the time-dependent SDE

dS(t) = λ (b(t)S(t) + (1− b(t))S(0)) dW (t), (7.66)

and approximate it with

dS(t) = λ
(

bS(t) +
(

1− b
)

S(0)
)

dW (t), (7.67)

where b is set as in Corollary 7.6.3. While the two SDEs (7.66) and (7.67)
may have similar properties in the neighborhood of S(0), they generally do
not even have the same range for S(t). For the constant parameter case
(7.67) with b > 0, the process S(t) has a lower bound, the root of the local
volatility function: S(t) ∈ (S(0)(b − 1)/b,∞). The same is not necessarily
true for the time-dependent SDE (7.66), as should be reasonably clear from
the following heuristic argument. If at a given time t, S(t) is close to the
root of the local volatility function but still above it, i.e.

S(t) & S(0) (b(t)− 1) /b(t),

it may so happen that at t+ dt, S(t+ dt) is actually below the root of the
local volatility function,

S (t+ dt) < S(0) (b (t+ dt)− 1) /b (t+ dt)

due to the change in the function b(·). The range

(−∞, S(0) (b (t+ dt)− 1) /b (t+ dt))

will then be reachable by S(·). The following proposition provides formal
justification.

Proposition 7.6.6. Consider the SDE

dX(t) = (a(t) + b(t)X(t)) dW (t) (7.68)

with X(0) ≥ −a(0)/b(0). If (a(u)/b(u))′ ≥ 0 for all u ∈ [0, t], then X(t) >
−a(t)/b(t) a.s. If there exists u, 0 < u < t, such that (a(u)/b(u))′ < 0, then
P(X(t) < l) > 0 for any l ∈ R.
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Proof. Define

ζ(t) =

∫

t

0

b(u) dW (u)−
1

2

∫

t

0

b2(u) du, Z(t) = exp (ζ(t)) .

Then the solution to the SDE (7.68) is given by

X(t) = Z(t)

[

X(0)−

∫

t

0

(a(u)/b(u)) d (1/Z(u))

]

,

as can either be checked directly or obtained from Section 5.6.C of Karatzas
and Shreve [1991]. Integrating by parts yields

X(t) = Z(t)

(

X(0) +
a(0)

b(0)

)

−
a(t)

b(t)
+ Z(t)

∫

t

0

(a(u)/b(u))′

Z(u)
du.

With X(0) ≥ −a(0)/b(0),

Z(t)

(

X(0) +
a(0)

b(0)

)

−
a(t)

b(t)

is bounded from below by −a(t)/b(t). If (a(u)/b(u))′ ≥ 0 for all u ∈ [0, t]
then the remaining term

Z(t)

∫

t

0

(a(u)/b(u))′

Z(u)
du

is non-negative and X(t) is bounded from below by −a(t)/b(t). If, however,
there exists u such that (a(u)/b(u))′ < 0, this term can be arbitrarily
negative with positive probability. ⊓⊔

In practice, the likelihood of actually breaching the lower boundary is
typically small and we can often safely ignore this possibility. If needed, one
can always “regularize” the time-dependent process to limit its range, along
the same lines as done in Section 7.2.3.

7.6.3 Skew and Convexity Averaging by Small-Noise Expansion

The technique used in the previous section to derive Proposition 7.6.2 is
not the only route to go. An alternative approach relies on small-noise

expansion, a concept closely related to the Ito-Taylor expansion in Chapter
3. To illustrate the versatility of this method, we shall use it to derive not
only the skew averaging result in Corollary 7.6.3, but also to demonstrate
how to compute average convexity in a time-dependent quadratic model.

As our starting point, we define, for some constant X0, the quadratic
form

ϕ (t,X(t)) = ϕ (b(t), c(t), X(t))

= (1− b(t))X0 + b(t)X(t) +
1

2
c(t) (X(t)−X0)

2
,


